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Onirblen Malematik

Malematiken har viixt fram ur behovet av att kunna beskriva foreteelser i omviirlden;
rikna far, mita markbitar, bygga pyramider, utreda planetbanor, forklara v e A e
smal axel kan vara att foredra framfor en tjock, se till att broar hiller, uppskatta vén-
letider 1 koer, etc. For att forklara olika fenomen eller {orutsiga hiindelser gor man
modeller av omvirlden, modeller som givetvis alltid #r forenklingar och ddrmed

11




Kapitel 1. Grunder

approximationer. Si linge modellen fungerar, dvs, ger H“,.‘\'Ullé.ll SOM A ey
sitt overensstaimmer med experiment cller annan erfarenhet, s iir deg bra. Fy .

t5 anviindbara modeller maste man ibland utveckla nya l,f;a rier, sorm Sif fur g :«Iu
impulser till forbittringar av modellerna. Men matematiken utveck s ocksd m;f
sig, utan direkta blickar p tillimpningarna. 0
For det som kallas “ingenjorsmatematik™ &r just samspelet mellan modell och py,

matik av allra storsta betydelse men det finns ingen motsitining mellan de 031 ‘é
delarna av matematiken.

fiiuhm

1.2 Logik

Matematiken ér logiskt uppbyggd med strikt definierade begrepp och bevisade satser
I denna bok kommer vi emellertid inte alltid att genomfora logiskt oantasti; g4 bevis
utan vi kommer ofta ndja oss med antydningar och troliggéranden. Det ir dock vij.
tigt att behédrska de grundldggande logiska begreppen och att forstd vad som mepgg
med ett matematiskt bevis.

For att bevisa ett pastaende maste man prestera logiskt hallbara argument som giller
allmdnt och inte bara i ett eller nigra speciella fall. Frin iakttagelsen att

1 =12,
1+3 =2,
1+3+5 =T

1+34+5+7 =42

kan man inte dra slutsatsen att summan av de n forsta udda positiva heltalen #r
n?. Ddremot verkar kanske iakttagelsen att vara sé sldende att det kan vara viirt aft
forsoka astadkomma ett bevis. Det skulle kunna g3 till s3 hir:

Pastaende: Summan av de n forsta udda positiva heltalen ir n2.

Bevis: Antag att n 4r ett godtyckligt positivt heltal. Lt s beteckna summan av de 7
forsta positiva udda heltalen. Eftersom talet 2n — 1 #r det n:te positiva udda heltalet
ar blir summan :

§=1+4+3+5+..+2n~-3)+ (2n —1). '
Vi skriver upp summan s en géng till i omviind ordning, dvs.
§=02n-1)+2n—-3)+(2n —5) + ... + 3 + 1.
Om vi adderar de tva uttrycken far vi
25 = (1+2n—1)+(3+2n—3)+ i+ (2n—-3+3)+2n—1+1=
= n+2n+2n+ ...+ 2+ 20 = 22

; . ) R
eftersom antalet termer i summorna &r n. Darmed har vi bevisat att s = n?, dvs. vi
har visat att vért pastéende giiller generellt.

For att bevisa att ndgot &r falskt ricker det med eft enda motexempel. St tex n
A, = n?2—n+41. En kontroll visar att A, drett primual forn = 1,2,3,4,5,... 20
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1.2 Logik

(Med primtal menar vi ett heltal > 1, som inte kan skri vas som produkt av andra
heltal > 1). Det dr frestande att gissa ate A, ir et primital 6r alla positiva heltal 7.
Men s dr inte fallet. Om man privar vidare finper man visserligen att A 4r primtal
dven forn = 21,22,..., 39,40, men vi fir Agy = 412, dvs, Aqy i en jamn kvadrat
och alltsdl inte ndgot primtal. Vi har diirmed hittat ett motexempel och pastandet att
4,, dr ett primital {6r alla » dr alltsd falskt.

Foljande klassiska bevis av den grekiske matematikern Euklides (cirka 300 f Kr) far

st4 som modell f8r en réitt vanlig typ av logiska resonemang, s.k. motséigelsebevis.
Pastaende: Det finns odndligt ménga (positiva) primtal.

Bevis: Antag att pastdendet r falskt, dvs. att det finns ett stérsta primtal, som vi
betecknar med P. Foljden av alla primtal kan d4 skrivas

2,3,5,7,11,... , P.
Bilda sedan produkten av alla primtal och addera talet 1. Detta ger

Uppenbarligen giller N > P, varfor, enligt vart gjorda antagande, [V inte kan vara
primtal. Men inget av primtalen #r faktor i NV eftersom vi alltid far resten 1 vid
division med nigot av primtalen. Men varje heltal, som inte sjélvt dr ett primtal,
kan delas upp 1 primfaktorer. Dérfér méste /V vara ett primtal och det finns séledes
primtal som r storre &n P. Detta strider mot véart antagande, som alltsd leder till en
motsigelse. Alltsd 4r vért antagande falskt. Pastdendet #r dirmed bevisat.

[ stéllet for att tala om péstdenden anvinder man ofta i matematiken ordet utsaga.
En utsaga kan vara mycket enkel, t.ex. “Huset dr bldst”. Pastdendet ”Der finns
odndligt mdnga primtal” @r ett annat exempel pd en utsaga. En utsaga kan vara
sann eller falsk. Huruvida en utsaga dr sann eller falsk beror ofta p& ndgon ingéende
“variabel”. I s4 fall talar man om en dppen utsaga. Nagra exempel pa Sppna utsagor
ar "Talet n iir delbart med 77, " Pojken heter Kalle”, >z < 3”. Aven en ekvation
som t.ex. % + 2z + 1 = 0 uppfattar vi som en Sppen utsaga; likhet giller kanske
for vissa vérden pa z och inte for andra.

Inom matematiken forekommer ofta pastdenden, dvs. utsagor, av typen "Om ...,
54...”. Vi har till exempel:

Om f dr deriverbar, s dr f kontinuerlig.

Om n? 4r udda, s dr n udda.

Om a dr negativt, sa ar dess belopp lika med —a.

Om mellan sidlangderna a, b och ¢ i en triangel réder sambandet a? +b* = 2

sd dr triangeln ritvinklig.
Om z = 3, s giller 22 + 6x — 27 = 0.

Utsagan “om A, si B” skrivs ofta med en implikationspil: ” A = B”. Detta ldser
man i sa fall giirna som: ” A medfor B”.
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Kapitel 1. Grunder
finieras genom Az = —2 respektive
agorna A och B definieras gen : e
sxempel 1.1 Om utsagorna / : - SO i e
313 : ,._2.I+ y—92 = 0 sa giiller uppenbarligen A = B (;fou,,rso_rr;( )24+(-2) ).
iremot 4r sann d ar=1
Diremot géller inte B = A, ty om B 4r sann aven

l Or utsagor 2 ir udda” respektive B : "Sista siffran
i Exempel 1.2 For utsagorna A : "Talet n ar p

BB ot St sdan ddremot B = A &r sant.
1l talet n 4r 5 sa giiller inte A = B medan ddre

Utsagan A = B kan girna skrivas B < A om det dr mer dndamalsenligt. Daremot
| sag
|| far man inte forvixla A = Bmed A < B.

Exempel 1.3 Pistdendet “sinz = 1/2 om z = /67 skr.iver.[mn T(Cd' fordel
"sinx = 1/2 < « = 7/6”. (Hr skulle det bli fel om man bytte pilens riktning.)

| For pastdendet A = B finns foljande alternativa omskrivningar (eller om man s
| vill, Oversitiningar).

OmA,sd B

BomA
? A dr ett tillrackligt villkor for B
FF B ar ett nodvandigt villkor for A
A endast om B
A ¢ A medfor B
E A implicerar B

E I'de fall dd man har bide A = B och B = A skriver man oftast A < B och liser
detta: ”A om och endast om B” eller ”A #r ekvivalent med B”. Ibland uttrycker

man i stéllet detta genom att siiga att A 4r ett nodvéndigt och tillrickligt villkor for
B”.

[ Exempel 1.4 Lit utsagan A vara att z = 1 eller z — 5 och 1t utsagan B vara
| 22 — 62 4+ 5 = 0. Hir har vi att A — B men dven att B = A. Vi skriver 4 < 3.

Euklides klassiska bevis p4 sidan 13 #r ett exempel pa ett indirekt bevis eller ett
motsagelsebevis. For att kunna genomfora ett sidant krivs att man p3 ett korrekt

sétt kan formulera negationen av den utsaga som man vill bevisa. Vi tanker oss d§
alt resonemanget fors inom en viss grundméngd.

Definition 1.1 Med negationen av en utsaga A menar vi den utsaga som ir sann da
A dr falsk och falsk d4 A ir sann. Vi betecknar denna utsaga med icke-A.

Ett annat beteckningssiitt som ibland i Orekommer iir ~ A,

Definitionen av negationen av en utsaga innebiir
med utsagan icke-B = icke-A.

14
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1.3 Ehkvationslissning

Exempel LS},ZH A \’ill;{l utsagan “alla faglar kan flypa”, Utsagan icke- A blir dé
“det finns en fagel som inte kan flygy™,

Exempel 1.6 Lit A vara utsagan “ckvationen % + 22 1 5 — 0 har (minst) cn reel)
rot’”. Utsagan 2cke-A blir dd "2 + 22 + 5 # 0 for alla reella tal =7,

Vi belyser anvindningen med ytterligare ett exempel pa ett motsigelsebevis.
Pastaende: Om n? dr ett jimnt heltal s &r n ocksa jéimnt.

Bevis: Vi liter A vara utsagan att n? ir jimn och B utsagan att n 4r jamn. Den
grundmingd vi héller oss till utgdrs av alla heltal.

Vi vill visa att A = B. Oversatt till pistdenden 4r detta i sin tur detsamma som
icke-B = icke-A.

Vi dr alltsa klara om vi kan visa foljande: Om n inte ir jamnt, s3 ar inte n? jamnt.
Med andra ord: Om n dr udda, sd dr n? udda. Men varje udda heltal kan skrivas pa
formen 2k + 1, dér k &r ett heltal. Vi sitter n = 2k + 1 och kvadrerar vilket ger

n® = (2k +1)% = 4k? + 4k + 1 = 2(2k2 + 2k) + 1,
som ir udda, ty 2(2k? + 2k) 4r jamnt. Pstaendet 4r dirmed bevisat.

1.3 Ekvationslosning

En vanlig ekvation &r ett slags utsaga. Att 16sa ekvationen brukar litet slarvigt in-
nebéra att man skriver upp ett antal ekvationer efter varandra och sd sméningom

kommer fram till nagot som man siger dr ekvationens 16sning.

I detta avsnitt ska vi analysera hur det egentligen gér till och vad det dr man gor nédr
man skriver upp dessa ekvationer efter varandra. Det dr inte n6dvéndigt, men det
visar sig ofta fordelaktigt, att skriva ut implikationspilar {Or att skapa logisk klarhet

d4 man l6ser ekvationer och ekvationsssystem.
Vi illustrerar den logiska tankegéngen med nagra exempel.

Exempel 1.7 Los ekvationen 22 + 2z — 3 = 0.

Lésning: Detta 4r ju en enkel andragradsekvation och 16sningen kan létt fis med
en formel som ar kind fran skolan. Vi ska emellertid hér forsoka vara omsorgsfulla

och med hjilp av logik och implikationspilar reda ut vad det &r man egentligen gor

ndr man anvander en sédan formel.
I sjilva verket ersitter vi den givna ekvationen med en serie ekvivalenta pastaenden.

Genom kvadratkomplettering fdr vi

224+ 2:-3=0
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v
(z+1)?-4=0
)
(z+1)2=4
)

x+1:2elleraf+1:—=2

Jtsa ekvivalent med den ursprungliga ekvationen, Vag
v .+ vad v

| . - .
“ har visat dr att om ekvationen ar uppfylld sa giller z = 1eller z = —3. Vj
ockséd visat att om T = 1 eller z = —3 <4 dr ekvationen uppfylld. Vi sdger dérﬁ; har

r att

losningen ar T = 1 eller x = —3-

Det sista pastaendet dr al

| Exempel 1.8 Los ekvationen 3 = ax% + 2.

Losning: Vi loser aven denna ging ekvationen genorm att ersitta den med ett antal

b ;
1 ekvivalenta utsagor.
Fa 13 = 1?2 + 22
; 0
| B3 -2r=0
F

3

B

r=0c¢llerz?—ax—-2=0

s
r=0ellerr=1/2x 1/"4 + 2
r=0ellerz = —1ellerz =2.
Ekvationen ir saledes i
. ekvivalent med den sista uts s. ekvati osni
S s e, < PR, agan, dvs. ekvationens losning

Exempel 1.9 Los ekvationssystemet

| z(y—=z) =0
{ 2+y:=4 "~ O
sning: Frén den forsta ekvationen foljer « = O ellery —z =0, dvs. = = 0 eller
n. Viser

y = x. Dessa b3 5ili -
béda mojligheter kombineras sedan med den andra ekvatione

16
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1.3 FEkvationslisning

a3 ol Z — /] r ' A € - > 3 ‘
attz =0 gery” = "!“/‘JI_V'(" y=2ellery = —2ochatty =z ger y* + y* = 4, dvs.
fa < 0 0 . . =] . L 9
v=V2 ellery = —v2. Alltsa fir vi

(=0 =0 PR | N

| g EleE _ o cller j VZ o oeller f ! /{

1 Y =< Y= —< L 2y = /2 o [ g =2 — x/Z
Denna losning kan organiseras pd ett mer dverskadligt och logiskt sétt genom al
anvinda ekvivalenspilar och behalla ekvationssystemet i varje steg.

z(y—z)=0
z? 44?2 =4
)
w=ilellgry —=@o =10
2 +y? =4

Il
8

% =0 eller y
y:QeIlery:—Z 9 = Ze]]ery:_\/ﬁ
|}

=0 z=10 z=1+/2 r=—/2
{ _ 9 eller{y:_2 eller{y:\/é eller{y:_\/fz-.

Observera att nar man skriver ekvationssystem med klammerbeteckning, som exem-
pelvis systemet (1.1) sid. 16, s& underforstas ordet ”och” mellan ekvationerna.

Exempel 1.10 Los ekvationen /372 +4 = 2z.

Losning: Det #r naturligt att kvadrera bada leden, men den ekvation vi dd far dr
inte ekvivalent med den ursprungliga. Vi kan daremot skriva (observera den forsta
implikationspilens riktning):

A : '\/3332+4:2:c:>B:33:2+4=4172 >
e (C:22=4 < D:{r=2ellerz=-2}

Vi kan dock inte av detta dra slutsatsen att ekvationens 10sning dr v = 2 eller v =
—2. Visserligen giller A = D men inte D = A. Med andra ord: Vi har visat att
om ekvationen ir uppfylld sa ar « = 2 eller ¥ = —2. Daremot har vi inte visat att
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_9 g4 ar ekvationen upplylld. Enklaste sittet att ta redg i
" ok Um

; e
omz = 2ellerz = . K il 9\ 4
i siitta in ¢ = 2 respektive z = —2. Vi far:

detta géller dr paturligivis a
r=2ger VL =V3" T+d=doch HL 2.2 =4dvs. VL = HI.
e \1, i+r4=40ch HL =2 (-2)= —4dvs. VL £ Hy
€= ‘,,;g, /| A i ' B

Al t4=20T= 2, dvs. ekvationens losning ar x — 2,

Allisd giller v 3T

|

1.4 Reella tal

[ analysen sysslar man med tal och egenskaper hos tal. I denna kurs skall vi ige
o4 in pa den stréngt logiska uppbyggnaden utan accepterar de fran gymnasieskolar,
vilKis hos tal och nojer oss med en repetition av vélkinda fakia,

vilkinda egenskaperna
lig bild av talen anvinder man ofta tallinjen.

-rj2 <23 | ) e

R et ]
-2 -1 0 1 2 3

Eor att fa en askad

cverar att de rationella talen (dvs. de tal som kan skrivas p/q,q # 0, p,
g heltal) inte rdcker for att fylla hela tallinjen. Exempelvis finns inget rationellt tal
som svarar mot v/2. Genom att infora irrationella tal "fyller man” hela tallinjen,
s4 att mot varje punkt svarar ett reellt tal (rationellt eller irrationellt) och, omvint,
mot varje reellt tal svarar en punkt pé tallinjen. De rationella talen har avslutade
eller periodiska decimalutvecklingar och de irrationella talen svarar mot oavslutade

icke-periodiska decimalutvecklingar.
Exempelvis talen 2/5 = 0.4, 2/3 = 0.666666 ... (perioden &r 6), 4/7 =
0.57142857. .. (perioden #r 571428) och 3643/3000 = 1.214333... (perio-
den ir 3) ir rationella. Ddremot ar /2 = 1.14142... (icke-periodiskt) och ™ =
3.1415926535897 . . . nagra exempel pa irrationella tal.

Man obse

Man brukar anvinda f6ljande standardbeteckningar:
N = {alla naturliga tal} = {0,1,2,3,...},

Z = {alla heltal} ,

() = {allarationella tal } ,

It = {allareella tal} .

Ibland kommer vi ocksi att anviinda foljande beteckningar:

Z; = {alla positiva heltal} = {1,2,3,...},
Z_. = {alla negativa heltal } ,

18



/.4  Reella al

alla positiva rationella tal } |

I
({J‘,‘ 1
0 {alla negativa rationella tal} ,
R, = {alla positiva reella tal}
R. {alla negativa reella tal} .

varie sammanhéngande bit av tallinjen kallas for ett intervall. Med ett slutet inter-
vall menas eft intervall dér ocksa intervallets andpunkter ingér. P4 motsvarande satt
tallar vi ett intervall i vilket inte &ndpunkterna inte ingar for ett dppet intervall.

Ty

!

en ofl(4 ring markerar ynarkorar dlt cnbervaliet it

atd den omslutn ke, Q‘ ar Rt onier + inte

inte Xnaﬂrat ‘:"-mue(- ar be.;r_ah.sa{ ot deita h&’([)
\_-\

Hela tallinjen ér ocks3 ett intervall. Intervall som 4r symmetriska kring nagon punkt
spelar en framtridande roll exempelvis vid gransvirdesdefinitionen och vid fel-
berskning. Ett 6ppet intervall som 4r symmetriskt kring en viss punkt brukar kallas
for en omgivning till punkten.

Vi ger en lista dver terminologi och beteckningar.

Beteckning Bendmning Anmdrkning

[a, b] Slutet intervall Begrinsat

(a,b) Oppet intervall Begrinsat

la,b) Halvoppet intervall  Begrinsat

(a, b] Halvoppet intervall  Begréansat

la, 00) Slutet intervall Nedat begrinsat (ej uppat)
(a,00) Oppet intervall Nedét begriinsat (ej uppat)
(—o0, b] Slutet intervall Uppat begrinsat (ej nedat)
(—o0, b) Oppet intervall Uppét begransat (ej nedt)

(—o0,00) = R Hela tallinjen

Vi paminner vidare om definitionen av absolutbelopp. Med absolutbeloppet av ett
tal £ menar vi talet ¢ sjilvt om ¢ > 0 och talet —t om ¢ < 0. Vi betecknar absolutbe-

loppet av talet med |¢| och har alltsd
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I - 3
Exempel 1.11 Berdkna ¥~
/7 menas atltid det positiva tal vars PR — /'/;

_yomy < 0. Alltsd dr V2=l ’

| osning: Med v/

i
F
om y > 0, men VU=

Om a och b ar reella tal s8 kan |a — b| tolkas som avstandet mellan punkterng 4 ..

bpa (allinjen.

Exempel 1.12 L0 olikheten |z — 3] < 2.

Lissning: Det giller att hitta alla  p& avstdndet mindre &n 2 fran punkten 3,

Vifarallsil < < D, och kan saledes skriva lz—3 <2&1<z<5]

N

stillet for att skriva 1 < = < 5 kan vi ocksa skriva « € (1, 5) dér tecknet € utléses
~illh6r”. (Se nedan, sid. 22.)
Foljande anvandbara samband #r vrt att observera:

HAY Kan inte x ligga ty ev-
lx _3;0| <d %gﬁﬁn@_etz till  x, gr for stort.’

:H: ~-=

—d<z—z9<d ~ "
) Xsd §§x"§ Xrd
Ear=) .

a:o—d<:1:<:1c0+d .. Har:
/ &r négra T
/ tinkbare légen av X

-

For atE inte géra uttryckssittet onddigt komplicerat tillater man sig ofta att skriva
(och siga) “intervallet ¢ < x < b” ndr man menar “intervallet (a, b)” 0sV.

Exempel 1.13 Skriv intervallet [1, 7] med hjalp av absolutbelopp.

Lﬁsning: Vi har

xe[1,7]<:‘,>1§x§7©—3§m—4§3¢>|x—4l53'

mitt Pu.nkt

o 4
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1.5 Triangelolikheten

1.5 Triangelolikheten

Man kan rita de tre vektorerna a, b och a + b sa att de utgor sidorna i €n triangel
ur). De tre vektorernas lingder ger triangelns sidldngder.

(S€ hg

For dessa giller
la+b| < |a| + [b], (2)
dvs. langden av en sida dr mindre in eller lika med summan av de ovriga sidornas
lingder. (Forsok att rita en triangel med sidorna 13,5 och 7 cm.) Detia ar anled-
ningen till att olikheten (1.2) kallas for triangelolikheten.
Eor alla reella tal a och b géller
—la| < a a < |al

{ZhZ0 o {i<nm &

av talet sjdlvt och dess ’motsatta”

(eftersom absolutbeloppet av ett tal dr det storsta
foljande sats som ocksa brukar

tal). Med hjilp av denna iakttagelse kan vi visa
kallas triangelolikheten.

Sats 1.1 (Triangelolikheten) For alla reella tal a och b giiller
la+b] < lal + 6] och |a —b] < la] + 9] . 4)

Bevis: Addition av olikheterna i (1.3) ger
—la|—|b] < a+bresp.at+b< la| + b} -

Alltsé f4r vi, om vi kombinerar dessa olikheter,
“(la] + 1b]) < a+b < lal + 10,
som &r ekvivalent med forsta olikheten i ( 1.4). Den andra fér man sedan ur den

forsta:
la — b] = Ja+ (=b)] < Jal +]=b = lal + 1] .

Beviset 4r ddarmed klart.
Exempel 1.14 Om |z — 1| < 2Zoch |y — 1] < 2 sé giller v — y| <4, ty

p—yl=l@-D+ A -yl <lp-Y+[1-y <4
\_v-/ \"_/
<2 <2
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Kapitel 1.
4 hovost 0.1 ifran 1.2 och b lige
jet hogst 0.1 ifrdn 1.2 och b ligger hisgs,

Vi avstaen

y ¥ . 1 ¥ 5 \i!
ae att a NEE! fe |
: b —a?

( frén 1.9 ligger ¢

| 1.15 Ant

Exemp¢
9 5, Hur lang

(0.2 ifran
q =925~ 1.2,

- forst atl .o
(2.0 ~ [.2)
19[<02+0.1=03

Vi observeral
— “(i) = 7'3} E({d, 9’}/‘ P

Losning:

r_a)—1.3

‘({; == L) =

I\ '
< [p—25[+la-
e dat (2 ifra ‘
Vi finner alltsd at b — a ligger hogst pa avstandet 0.3 ifran 1.5.
71 inner abtsd &5 L
" g—4 | 10
“ Vi8s I ) k:) éier ‘-Fa—fmfmﬂs . T
pel 1.16 Visa attomz > 2828 3 +sinz .

Exem

for T och namnaren for N ochfarda T = |z — 4| <
Eftersom 22 +sinz > 0 (viharjuattz > 2

4 >

Lésning: Vi kallar tiljaren
x| + 4 —;ff:+4_<_(m+2$:3m. a
ad ) . a
giller N = |z° +sin 1| = 2% +sin 2 Men z° +Sin.% > 7
diir vi utnyttjat sinz < 1 och z > 2. Av detta foljer :
r 3z 4 10
T _3r 5T L1

= e = —
N—-N—"# =z <

€
———

1.6 Mingder

a praktiskt nér det giiller att formulera matematiska resone-

Med en mdngd menar Vi en samling av ett antal objekt.

Begreppet méngd dr oft
allar vi for mingdens element. Dessa element kan vara tal,

mang och pastdenden.

Objekten i midngden k

men ofta behandlar man méngder som bestar av helt andra sorters element. Redan
n av alla hela

et for att ex-

p4 sidan 18 beskrev vi nigra talmangder; exempelvis Z dr méngde

ial. Aven de intervall som vi beskrev pé sidan 19 dr mangder. I stéll

empelvis tala om intervallet (a, b] s kan vi tala om méngden av alla reella tal som
uppfyller a < z < b. Detta skriver vi gima {z : @ < & < b}, vilket utléses som
foreghende mening. Exempel pd andra slags méngder dr litt att hitta; mangden 2\
alla teknologer i Luled, mingden av alla andragradspolynom OsV.

Om z dr ett element i mangden A uttrycker vi detta med hjdlp av symbolen € och
SHel & & A" Detta utldses "z (illhor A”. Om alla clement i en viss mangd Adr
zlccr:nilr:;n/;nén%d N (dvs‘,‘ z € A= x € B) siger viatl A dr en delmingd av B
ik BOm A.ar en delm‘zingq av B och att man sirskilt vill betond att
e it Rtz 1‘4 AMZ?m ine dr element i A siger man att A dr en dkta de!‘f.naf-zfgd
syinliol fﬁf e mng,d i Det hqr vidare visat sig indamdlsenligt att ha en sirskild
kallas den tomma maf’ som helt saknar element; den brukar betecknas med 0 och
: ngden.
inom en fIX

Man tan! ig vidare allt
nker sig vidare alltid att alla resonemang rérande mingder fors
v denna fix2

rundmd :
grundméngd och att alla méngder som man anvéinder ér delmingder a
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1.6 Mingder

mingd. Om nu A ir en mingd sa ér “resten” av grundmiingden en méngd som vi
kallar komplementet till A och betecknar med [ A.Det ir ofta praktiskt att symboliskt
sskadliggora mingder och relationer mellan miingder i form av enkla figurer som
hrukar kallas mdngddiagram eller Venn-diagram efter en engelsk matematiker och

logiker.

Man tidnker sig da att den yttre ramen begrinsar den fixa grundméngden medan
sjdlva médngden symboliseras av en mer eller mindre rund figur. I nedanstdende
figurer illustreras en méngds komplement LA samt att B C A.

BCA

Vi kan ocks3 utfora operationer pa méngder; har vi tvé méngder A och B sa kan
vi bilda den mingd som bestér av alla element som ingdr i minst en av de tva
méngderna. Denna nya méngd kallar vi unionen av A och B och betecknar med
AU B. Den mingd som bestar av de element som ingér i bdde A och B kallar vi for
snittet av A och B och betecknar med A N B.

AU B

Exempel 117 N c Z CQC K.
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Exempel 1.18 Om A = {3,5,7} och B = {1, 3,4,5)sddr AU g =
¥

och AN B = {3,5}. i’“'4,5‘7{
]

Exempel 1.19 Lat A vara intervallet (2, 7) och B intervallet [5 8. D3 »

intervallet (2, 8] och A N B intervallet [5, 7). SR Ay B

1.7 Kvantorer

En matematisk utsaga har ofta formen “for varje 2 € A giiller P eller ge ot £

x € A for vilket P dr falsk™. P idr hér en 6ppen uts 1ins

aga med gry n(j mingd A «
utsagor skriver man ofta med hjélp av tvé s.k. logiska kvantorer som man h:; y

X eckna.
med symbolerna V resp. . knay

Kvantorn V betyder (och utlises) *'for varje” eller ”fér all

. 99 s 99 1ae *? ’ B KV&mtOﬁ“n 3 u“dS(}, QL’E’.;
betyder “'det existerar” eller “det finns”.

Exempel 1.20 Pdstdendet att 22 — 3z + 3 > 0 for alla z skulle kunna formuleryg
pa foljande satt lerag

Vz € R, :z:2—3:£+3>0,

vilket skulle utldsas "for varje reellt tal = giéller att 22 — 32 + 3 > (.

Exempel 1.21 Péstdendet att ekvationen z2 — 3z + 2 = 0 har en (reell) rot skulle
kunna formuleras pa féljande sitt

Jdx € R; $2—3x+2:0,
vilket skulle utldsas “det finns ett reellt tal z s att 22 — 3z -2 = (",

Det speciellt praktiskt att anviinda de logiska kvantorerna nir man skall formulera

negationen av en dppen utsaga. Om vi t.ex har en utsaga Vz € A; P 3 ir dess
negation utsagan 3z € A; icke — P,

1.8 Summa- och produkttecken

Ibland har man anledning att addera &tskilliga termer som byggts upp enligt nagot
speciellt monster. Till exempel

9411413+ 15417 + 19 + 21 )
4r summan av sju konsekutiva (= pa varandra féljande) udda heltal. Uttrycket
24+446+8+10+...+ 106+ 108+ 110 ()

24
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1.8 Summa- och produkttecken

of sumiman av de 55 forsta jamna positiva heltalen. Vay jeterm i (1.6) 4r av formen
gl @

Den forsta termen fiar vi om vi séitter % I, den andra om vi sétier 2. den

4 D) " H hoQ ¢ v s 4 »” A ¢ ol
.o med & = 3 osv. till dess att vi kommer til] 55, som ger 255 — 110,
4 1

ol

ﬁﬂ\‘&i

kunna skriva summor med manga termer anviinder man cn speciell symbol,

kiska bokstaven 3 (stora sigma), pé foljande s#it:

s )

For atl
den gt

] ) , ) 55
24+4+6+84...4106+ 108 + 110 - 5 2k,
k=1
Allmint 18t Gm; @mt1, - - - Gn Vara givna tal. Vi skriver d

n
am 1 Am41 + Am42 + ...+ Uy = z ., (7)
k=m

variabeln k kallas for summationsindex och ¥ 61 summatecken. Hogerledet i (1.7)
prukar [dsas ut sd hdr: “Summan, dé k gér fran m till n, av a,,” eller ”summa ay, dé
j: ¢ar fran m till n”. Det dr underforstatt att & endast antar heltalsvirden. Med hjdlp
av summatecken kan (1.5) skrivas (parentesen ér viktig har!)
10
9+11+13+...+21= 3 (2k+1),
k=4
eller
11
9+11+13+...+21 =3 (2k—1).
k=5
Beteckningen & for summationsindex kan bytas ut mot ndgon annan bokstav, som
tex. ¢, 7, m eller n. En ofta forekommande variant ir den grekiska bokstaven v (ny).

Vi fir for (1.5)
7 7 7 6 10
gl(Zy +7) = };1(% +7) = ;(27 +7) = Z;O(Qn +9) = 24(27)1-%— 1).

Exempel 1.22 Med hjilp av X—tecknet fr vi mojlighet att skriva foljande summor
pé ett kompakt sitt.

5 5
i 1 _ N~ 1 N~y
Peivbedeg=3d=200
1.1, 1 1 _ 1
7+§+ﬁ+"‘9_9_322_j—_k_1"
69
2-3+4-546-T+...—69= > (=1)F-k,
k=2
105
2‘3+3-4+4-5+...+104-105+105-106:Ek(kt+1),
) | 103 =
z+zi4ad ., 4208 =Y b,
k=1

23
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Kapitel 1. Grunder
., om det inte kan uppsté missforstgn A

[a}

7
let for }j a

n
Ofta skriver man Y aj istil ]
Till exempel kan vi skriva

i
triffande summationsindex.

5 5 b | 5 25
S =+ .- T o T Lok

- B ) - ae ennmmationsindex T Zata rran ob
{ ir tveksamt vad som af summationsindex sa maste man skriyg

Men sa snart de
ande). Uttrycket

"k =" (eller molsvar
T

L

1

ir tvetydigt, eftersom det kan tolkas dels som

Zk’:114—21+3‘—l—..=+n",
k=1

dels som

iki:kl+k2+k3+k4+..,+k".

=1
Observera dven

6
d+d4+4+4+4+4=> 4=24
k=1

T
1+141+4..+14+1=3 1=n
n styck;; termer b=t

For att pa motsvarande sitt skriva produkter kortfattat anvinder man den grekiska
bokstaven I (stora pi) precis som man anvinder ¥ for summor:

n
aj-az-az-...-ap = || Q.
k=1

Exempel 1.23 Vi kan skriva

17
5-7-9-...-35=[](2k+ 1),

k=2
17
4-6-8-...-34+1= ] 2k+1,
k=211
2-4-8-16-...-2048 = [] g
kil
a-a?-a3.qt. a” = [] &,
J=1
18 16
4-8-12-....64 =[] 4(j —2) = [ 4*.
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1.9 Aritmetiska och geometriska summor

1.9 Aritmetiska och geometriska summor

En aritmetisk summa @r en summa av tal som bildar en aritmetisk foljd. En arit-
metisk foljd karakteriseras av att skillnaden mellan tva konsekutiva tal hela tiden iir
konstant. Denna konstanta skillnad kallas den aritmetiska foljdens differens.

Exempel 1.24 2,5,8,11,14,17 &r en aritmetisk foljd, vars differens ar 3. Férsta
termen dr 2 och sista termen &r 17. Foljden 2,5, 7, 10,12, 15 #r ddremot inte arit-
metisk.

Summan av en aritmetisk f6ljd f&r man genom att man skriver upp f6ljden tva ginger
i motsatt ordning. Sedan ldgger man ihop forsta och sista, andra och nist sista
termerna, etc. Vi belyser tekniken med ett exempel.

Exempel 1.25 Betrakta foljden 1,3,5,7,9,... ,2k—1, ... och sdg att vi vill rikna
ut summan av de nio forsta talen. Sau
Sg=14+3+5+74+9+11+13+15+17.
D4 har vi
sg=14+34+5+...+15+17
So=17+154+13+...+3+1

Dl = 18#18-4—18-!- .+ 184 13.

9 stycken termer som var och en &r lika med 18

Hirav far vi direkt

ty antalet termer &r 9 och summan av den forsta och den nionde 4r 18.

Med samma teknik som i exempel 1.25 visar man att om
Sp,=a1+ax+...+a,

dr en aritmetisk summa sé giller

iy 2 %_zﬁl_) (8)

Exempel 1,26 Eu s.k. amerikanskt lotteri innebir att man har lotter markerade
1,2,... 100 och att varje lott kostar s& ménga kronor som loltens nummer visar.
Hur mycket pengar inbringar lottfrsiljningen, om alla lotter siljs?

Losning: Det giller att bestimma en aritmetisk summa med 100 termer med den

. 100(1 410
forsta termen 1 och den hundrade termen 100, dvs. ( 2+ L = 5050. Man far

alltsa in 5050 kr.
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Kapitel 1. Grunder

Exempel 1.27 Vad dr summan av de n stycken forsta positiva udda talen? (Se 5,
" o _* . W advey

beviset pa sid. 12.)

1), som ir en aritmetisk summa (.

rmen 1 och den n:te termen (2, —
. T

okall bestimma Sj—(2F -
)

Losning: Vi
| den forsta te

differensen 2) med n termet, e
Vi far enligt formel (1.8)
n ‘ n(1+2n—1) 3
SEk-)=—73 — "
k=1

sir en foljd dér kvoten mellan ett godtyckligt tal i foljden och de

En geonretriskfﬁlid
hela tiden dr konstant. En geometrisk summa 4r surimgg

nirmast foregaende talet
av en geometrisk foljd.

8, 16,32, 64,128 ir en geometrisk foljd med kvoten 2

Exempel 1.28 Foljden 4,
18,20, 22 inte &r geometrisk.

medan foljden 4, 8, 12, 16,

Den allminna formeln for en geometrisk summa far man enklast genom att oy

titta p4 ett specialfall, ndmligen foljden

20 =9 k n
| IR ool ARENY LA PRRYS A

dir forsta talet dr 1 och kvoten r. Vi betecknar summan av de n + 1 forsta termerna

med S,,+1 dvs.
i‘ k

Sn+1 = T \

P 9

D4 far vi, efter multiplikation med r (7 # 0),

n n n+1

roppr =r Y k=3 s =% rk. (10)

k=0 k=0 k=1 |
Subtraherar vi nu (1.10) fran (1.9) s blir resultatet
1 n+1
g1 —T8np1 = r¥— S rf=
7 n
= 1+Zrk—2rk—rn+1:1_r"+l

varav foljer
S'I’H—l(l s ’I") =1 - 7-'n'+1.

Om r # 1 ger detta till sist den viktiga och ofta anvindbara formeln

n 1 —7‘"+1
Spt1 = Y 1P = —
kgo T (11
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1.9 Aritmetiska och geomelriska summor

Observera alt antalet termer dr n + 1. Formeln giller under forutsittning att kvoten
r # 1. Falletr = 1 ger ju en aritmetisk summa (med differensen 0) och behover
inte behandlas hir. Vi far ur (1.9) med r = 1 insatt

n n

. _ 1k -k
"7!,»—"-' — Zﬂ, l_ — z ‘ —— "‘ _'
k=0 k=0

strangt tagel

vi illustrerar anvandningen av formel (1.11) med ndgra exempel

Exempel 1.29

340427481 =30 431 432430130 = 125 _ 19
1-3 7
Exempel 1.30
i . 1—(1/5)* 156
> /syt =+ = 22
=0 1—(1/5) 125
Exempel 1.31
- . 1—(=5)° 145°
-\ k e
—0)" = - = 325521.
kzzjo( ) 1—(-95) 1+5 .
9
Exempel 1.32 Berikna [] 5.
v=0
Losning:
9
5 g

9
HSV:50'51'52‘""59:50+1+2+m+9:5

v=0

all shahen av Persien ha erbjudit schackspelets upp-

aren skulle f& vilja sjilv. Denne begérde da att fa
9 for den andra, 4 for den tredje, 8 for den fjarde

ruta till och med den sextiofjarde. Shahen, som

lamnade gillande sitt medgivande. Han
rn Overskrider

Exempel 1.33 Enligt sdgnen sk
finnare en beloning som uppfinn
1 vetekorn for bréidets forsta ruta,
etc., dvs. dubbelt upp for varje

tyckte att detta var en blygsam beldning,
hlev emellertid radlés nir han fick veta att det begirda antalet veteko

tusentals &rsskordar vete pa hela jorden! Totala antalet korn blir ju

064
1424224234 ...+208 = 11 22 _ 964 _ 1 = 18446744073709551615.

(Det liir g4 cirka ett par tusen korn pé 1 liter vete )

Om férsta termen i en geometrisk summa inte #r 1 sa kan man alltid bryta ut den.

Kvar innanfor parentesen far man en sumima med forsta termen 1.
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Wt P, dr sant.

-~ p och visa att péstaendet 1 sa fall &r sant

I. Visa att pastdendet giller for n = b, dvs. ¢

II. Antag att pastdendet giller for #
ocksa forn =p+ 1.
TIL Hinvisa till induktionsaxiomel

Exempel 1.36 Visa att forallan € Z, giller
1 7
(14

%

‘ﬂ _.,.F-d__‘sv = —
= k(k+ 1 1) n+

Losning: Vart pastdende P, #r hir likheten (1.14).

I. For n = 1 géller
VL= -
T 1(1+1) 2

Allisé 4r likheten sann for 7 = 1.
II. Antag att likheten dr sannt for n = p, dvs. att
£ (15)

P 1

kgk(kJrl) T p+1

Vi vill visa att det d& maste gélla
ptl 1 p-id
=z (16)

kzs:l kE+1)  p+2
1 ’ .
till viinsterledet i antagandet

Vi observerar nu att om vi adderar
(p+1)(p+1+1)
6). Vinsterledet i (1.16) kan alltsd

(1.15) s& far vi vansterledet i pastiende (1.1

skrivas
ptl 1 14 1
P Zl k+1) T i1l
== 2 enligt (1.15)
— p s ! =
p+1 (p+1p+2)
p(p+2)+1 (p+1)2  p+l
=

T pr)m+2) e+tDE+2
oiller. Vi har

Vi har allis4 kommit fram till “ritt hogerled” och har visat att (1.16) g
med andra ord visat att om (1.14) dr sann for n = p sa dr (1.14) sann dven for

fi =P 1
II1. Enligt induktionsaxiomet féljer nu av I och IT att likheten (1.14) géller [or

varje heltal n > 1.
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rxempel 1.37 Visa att [6r alla heltal n > 2 giiller

1 I
Tt g <R

| osming:

, e 1 o =
1 Forn=2harviVL =1+ ﬁ och HL = 24/2 — 1. Men

1 ) .
f-"’""“ﬁ%‘:2‘6”1@\@*‘1<2v2a«,/§<;~>2a/2<34;>8<9,
V,;,

Siledes ir olikheten sann for n = 2.
1I. Antag nu att olikheten &r sann for n = p, dvs. att
1+L+n,.+_1._,<2\/]3_1.
va TR

Vi vill visa att i sd fall giller

1 1 1
1+ —=+

cot + <24/p+1-1,
V2 vP  Vp+1 d
dvs. att olikheten 4r sann dven for n = p + 1. Men om
1 1
1+ —=+...+—=<2/p—-1

V) NG

sa far vi
1 1 1 1
e T i + <2/p—1+
V2 VP Vp+1 VP

Vi sr saledes klara om vi kan visa olikheten

1
2,/p—1+ < %fp+1 =1,
VP —

p+1

I -+

som dr ekvivalent med

2/p/p+1+1 < 2(p+1)
X
2/py/p+1 < 2p+1
{ (ty bada leden dr positiva)
dp(p+1) < 4p° +4p+1
0
0 = L Klart!

vp+T

Indultion

IIL. Enligt induktionsaxiomet foljer av I och IT att olikheten (1.17) &r sann for alla

n22.
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1.11 Permutationer och kombinationer

Hittills nér vi talat om méngder s& har vi inte tagit hdnsyn till elementens ordning;
méngden {1,2,3} och {3, 1,2} dr exempelvis samma méngd. Om vi dédremot férut-
sétter att elementen skall rdknas upp i en viss ordning sé talar vi om en ordnad
mdngd.

Antag nu att vi har en mangd som bestdr av ett dndligt antal element av nigot slag.
Vi antar att antalet element 4r n och betecknar mingden med A = {ai1,az2,...,a,}.

Pa hur méanga olika sitt kan denna miingd ordnas? Eller annorlunda uttryckt; hur

manga olika ordnade mingder kan vi skapa med hjélp av dessa element.

Att ordna méngden innebér att vi viljer ett element som det fOrsta, sedan ett andra,
dérefter ett tredje osv. Nar det giller att vélja det forsta elementet har vi n olika
mojligheter. For var och en av dessa n mojligheter finns det sedan 7 — 1 olika
majligheter att vilja det andra. Vi har med andra ord n(n — 1) olika sitt att vilja de
tvé forsta elementen. For var och en av dessa n(n — 1) mojligheter finns det n — 2
mdjligheter att vilja det tredje elementet, dvs. det finns n(n — 1)(n — 2) olika sitt
att vélja de tre forsta.

Pa detta sitt finner man till sist att det finns nn-1)(n—-2)(n—-3)-....3-2-1
s:c:itt alt ordna de n elementen ay,. Uttrycket1-2 - ... . (n — 2)(n — 1)n férkommer
sa ofta att man infort ett sirskilt namn och en sirskild beteckning.

?eﬁnition 1.2 Produkten1- 2. ... (n — 2)(n — 1)n betecknas med n! och utlédses
n- fakultet”,

Deﬁnﬁtion 1.3 Laten dndlig méingd A vara given. En ordnad méngd som bestar av
samtliga element ur A kallas en permutation av elementen | A
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m/ﬁcd Lﬂ(c‘ﬁﬁa bCi@Ckﬁlng;!f DCh h(’_‘,g[’(ji')l') kﬂﬂ Vi i(‘,g';]‘]“lgra d{;;g Vi ”‘/if%-';li i (U!’!ﬂ ay r")“&nd@

sats.

cate 1.2 Antalet olika permutationer v Ao , .
Sats 1.2 Antaler olika permutationer av de n. ¢ lementen )y, .o, y, dr nl.

Exempel 1.38 Hur ménga olika ord pd sex bokstiver kan man bilda genom att kasta
om ordningen av bokstiverna i ordet KIRUNA? '

E}@@E‘ﬁﬁwgi \-}';H_;EG ord dr en permutation av de sex {3](;1]](;[][(;[37 dvs. bokstiverna.

K. I, R.U, N och A. Antalet olika ord #r saledes 6! = 6 . 5-4:3.2.1="790.

9

Exempel 1.39 Hur mﬁngaﬁ ord kan man bilda genom ait kasta om ordningen av
hokstiverna i ordet LULEA?

Losning: Vi ser hdr att bokstaven L forekommer tv4 ganger. Vi ger forst vart och ett
av dessa tvd L en identitet genom indexsiffror, dvs. 4 UL2EA. Dessa fem bokstiver
kan enligt ovan permuteras pa 5! sitt. Vi kan sedan gruppera dessa permutationer
parvis, ddr varje par bestdr av tva permutationer som endast skiljer sig at genom
ordningen pa L; och La. Antalet olika ord blir alltsa 5! /2 = 60.

Exempel 1.40 Hur manga ord kan man bilda genom att kasta om ordningen av
bokstéverna 1 ordet SALAMANCA?

Losning: Om vi ténker oss att de 4 A:na har identitet si far vi 9! olika permuta-
tioner. Dessa kan grupperas sd att varje grupp bestar av permutationer som endast
skiljer sig genom ordningen pé de fyra A:na. Antalet permutationer i varje grupp ar
antalet mojliga permutationer av fyra element, dvs. 4!. Antalet olika ord ar dirfér
91/4!=15120.

Vi ska nu g4 6ver till ett annat problem, ndmligen undersika pa hur ménga sitt man
kan bilda ett mingd bestiende av k element, valda ur en miingd bestdende av n
element, k < n. Vi bérjar med ett exempel.

Exempel 1.41 En klass bestar av 16 elever. Hur manga olika fotbollslag (bestiende
av 11 spelare) kan man bilda i klassen?

Lisning: Den forsta spelaren kan viljas pi 16 sitt, den andre pa 1S5 osv., den elfte
P4 16 — 10 = 6 olika sitt. Om vi skulle ta hénsyn till ordningen betyder det att vi
skulle kunna bilda 16-15-14-13-12-11-10-9-8-7-6 = 16! /5! lag. Emellertid bryr
vi oss inte om ordningen och konstaterar att dessa lag kan grupperas i grupper, dir
lagen i varje grupp innehdller samma spelare, men skiljer sig it genom ordningen
mellan spelarna. Antalet lag i varje grupp &r lika med antalet siitt att permutera 11
spelare, dvs, 11!. Antalet olika lag ir dérfor

16! ‘
Sin 368

35




Kapitel 1. Grunder

Att vilja ut k element bland n givna brukar kallas atf vilja en kombingy,,,, |
- ‘ v CEILPLLL ,{);»]/ Deqra

av k element. Exakt samma resonemang som i exemplet ovan leder till f);, ,:‘y'f'%'j“
‘ Jande gy,
Sats 1.3 Antalet mojliga kombinationer av k element ur n BivVha iir |
“j‘ !
1 W =)
| Dessa tal brukar kallas for binomialkoefficienter och betecknas med (7 dve o
(n) B n! _nr—1)-..-(n—k+1) } o
k klin—k)!  k(k-1)(k~2)-...2-1 (1%,
Vi har t.ex.
7 7-6-5-4-3-2-1 7-6 9, 9-4-3 8, 8.7.¢
W=D s32Dn 1.2 (3 =173 (4}:;??;7
10, 10-9-8 7-6:-5:-4-3-2 10, 10
(¢)=T3 32356789 (/=771

Uttrycket () utldses "n Over £”. Notera att i formeln for () har tljaren oy
ndmnaren samma antal faktorer, nimligen (efter forkortning) k st. Det visar sio
ocks4 dndamalsenligt att definiera () = (7') =1 :

Binomialkoefficienterna uppfyller bi-a. foljande tva samband:

n n n+1 o
n n

= A 1.20)

G = (") (12

Dessa tvd samband kan man visa med hjalp av Sats 1.3, formel (1.18), men det &
mer instruktivt att tillimpa ett kombinatoriskt resonemang. Att (1.20) giller inser
man av att operationen ait ta bort k element ur mingden och dérigenom bilda en
mingd bestdende av k element lika gdrna kan uppfattas som ett satt ait bilda en
mingd bestdende av de Sterstdende n — k elementen. Antal mojliga kombinationet
bestiende av k element dr dérfor lika mdnga som antalet mojliga kombinationer
med n — k element.

Hogerledet i (1.19) anger antalet mojliga kombinationer av & + 1 element av
element. Antag nu att vi sirbehandlar ett visst fixt element av dessa o + 1 stycker
och kallar det for «. De olika kombinationerna av de n + 1 elementen kan nu delas
upp i tvé grupper; de som innehller elementet o och de som inte gor det. Def
forsta gruppen bestér av k+ 1 element valda bland n stycken (de ursprungliga - °
exklusive o). Antal element i gruppen ir alltsé (). Den andra gruppen bestst a)v
o samt k st andra element valda bland de n (de ursprungliga n + 1 exklusive &7

-

n+1
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1.12  Binomialsatsen

Antalet element 1 gruppen éir déclor lika med antal kombinationer av % element ur 7
st., dvs. (}1). Detta ger (1.19).

Dessa samband forklarar varfor man kan skriva u pp binomialkoefficienterna i form
av ett schema som kallas Pascals triangel. Det (6rsta sambandet svarar mot att varje
(al inne i triangeln erhalls som summan av de tvé tal som stér ndrmast ovanfor. Det

andra sambandet svarar mot att Pascals triangel dr symmetrisk,

(o)

, W
oY e®
0 1 2
B I ) B ) B C N ¢
RS A ¢ BN C I ) @@
(6) (%) (3) & (9 (5) ()
() n+1 k+1)
13-}—1)
1
1 )
1 2 1
1 3 3 L
1 4 6 4 1
1 5 10 10 5 L
1 6 15 20 15 6 1
1 7 21 35 85 21 7 1
1 8 28 56 70 56 28 8 1

For att rakna ut binomialkoefficienterna &r det ofta enklast att anvinda Pascals tri-
angel. (Den dterfinns i vanliga tabeller och handbocker som t.ex. i Rdde-Westergren:
BETA (Studentlitteratur), men #r ju litt att snabbt skriva ner.)

1.12 Binomialsatsen

En produkt upphoid (ill ett positivt heltal n dr Litt att rikna ut. For en summa blir
det mer komplicerat. Vi har

(a-b)" =a" -b" forallaa,b € R,
men, som bekant, ir (a + b)™ inte lika med a™ + 0™. Om vi utvecklar parenteserna
genom vanlig hopmultiplikation sé far vi
(a+b)! =q+ b,
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Kapitel 1. Grunder

‘ ] 2
(a+b)?=0a"t 2ab+0%
3 — g3+ 3a2b + 3ab? + b7,
(@ b = at + 4a°b+ 6a*b Aa

apterna i dessa utvecklingar ir just de binomialkoefficienter (som kal]
{enieriic ICSSd ULy £ N kallgg

Loeffic : T TR .
i fiersom de dyker upp ! samband med binomet 4.+ b) som vi ovan by,

fersom eftersom de AyXCL B O tcen iller nimlige ' Ovan begey,
R binomialsatsen giller nimligen allmént a4 ...

(ny. Enligt den s.k.
nade med (%) Enligt

2 b S (1
cicnien for a

omialsatsen) For godtyckliga tal a och b och for alla helsy |,

Ul

i inge L AY? gae av (7))
—kpk i utvecklingen av (a+b)" gesav (7).

Sats 1.4 (Bin

gdller ) :
n N, n—1 n—212 _ (P ke |
(a_;,b)"_—.(o)a"—{—(l)a b+(2)cz, b+ ... (k)g ey
+ ( T ) b1 .
s ¥ o 1 ao -+ 4\ n}b“.
eller, skrivet med summatecken,
L n—kik
(a+0)" = E(k)a b®. o

k=0

Bevis: Det giller att multiplicera ihop n stycken lika parenteser
(a,+b)(a+b)(a+b)...(a+b)...(a—{—b)(a+b). )
Frén varje parentes skall vi antingen ta ett a eller ett b och far da ett antal termer av

typ
aab...b...ab

n stycken faktorer '

Man samlar ihop termerna, skriver om dem pa potensform och fragar sig: Hur
ménga av termerna innehaller precis k stycken faktorer b? Dvs. hur ménga (e
mer av typen a”*b* finns det? (Hr giller naturligtvis 0 < k& < n.)

FtZr att fd denna typ av term skall vi ur de n parenteserna i (1.22) vélja ut k stycken.
fran vilka b skall tas. Men detta kan enligt Sats 1.3 ske pa () olika satt. Alltsa blr

( —k
(%) - @"~*b* summan av alla de termer som innehiller precis k stycken fakioret b
Saken &r ddrmed Klar,

Exempel 1.42

8
(et gﬂ(g)as—kb’“ -

== 848 8 7 8 = . 0. AL e
o)+ (a4 (0% + ($)a%® + ($a'b + (a0 + (G0
+(7)(1,b7 . (g)bB =

= g8 7
a® 4+ 8a’b + 28452 + 56a°b3 + 70020 + 56a3b° + 28a2b° + 8ab” + b,
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1.13  Numeriska berdikningar

X ] 1.43 Bestam koefficienten for 216 § b ; ,
Exempel 1.43 Bestim koefficienten for 216 binomialutvecklingen av (z + 92)19,

Losning: Vi har

(¢

19
([?' l é/?r)'ﬂ = >j4‘ (‘/i’):’-”’” f::tz/:w

k=0

Men 19 — & = 16 & k = 3. Alltsa blir koefficienten for z'6 lika med

19-18-17

19y 53 _ B
(5)-2°= 555 -8=7m2.
Exempel 1.44 Bestdm koefficienten for 5 1 binomialutvecklingen av
1
(20 — =)°8,
®

Lasning: Eftersom vi i detta fall har ett minustecken innanfor parentesen, maste vi
forst géra en omskrivning:
1 1

(20 — — 58— 4+ (—=2))%8 =
2e-2)® = @z+(-1)
X8 58 ss—k; Lvp _ o8 B8, sg k.5
— —R(__Y — 3 —k _(_1\k,.58—2k
S (D@ r- 1 = 3 () 257k (e
Vi fir en term innehallande 52 om och endast om 58 — 2k = —52, dvs. k = 55,

s4 att den sokta koefficienten blir

(55) "2 D> =(g5)-2°( 1) = ——5 5 8(-1) = -246848

Vi avslutar detta avsnitt med att skriva binomialutvecklingen p ytterligare ett satt:

(a+b)" =
—1 nn—1)n-2)
:a”+na”_1b+n_(1n—.§—_)an—2b2+ ( 1.2)(.3 )an Bt @3

n(n_1)(n_2)'”(n_k+1)a”'kb"’+...+nab”‘1+b".
1-2-3-...-k

1.13 Numeriska berikningar

For att bestimma perioden 7" hos en pendel finns den s.k. pendelformeln

l
T:27r\/ja
g
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Kapitel 1. Grunder
och diir g dr tyngdkraf tsaccelerationen.
upphéngd i ett stelt snore utan massa, v,
2 - 3 s g =8 Y

sma och att det inte finns négon frik;
ad SERUOR

dar [ ar pendelns lingd
Formeln giiller f6r en punktformig kula u
‘ dacevinklarng ar ¢

dare miste man anta all a.ulMugmel(/uun,)a”f - e e
ningen Formeln giiller alltsa for en idealiserad situation, for en s k. my.
matisk pg‘nclclv Men trots att sédana pendlar inte finns i verkligheten s ér forme,
1Atl. ? R : e nd att de inte 4 f"ifc}"ga@ﬁ,”@ er ens alltid &n< Y
bari prakuken. Detta berof pa att d(;l ml.cﬂ %n; nojg I r;.{rg., d"m,m Snsk vy
ituationer. Man maste tillata fel, men det 4r viktigt att mo,

1 upphiing

anviand
- ait riikna exakt i alla s e L K &
i storsta mojliga utstrickning har kontroll over felen. Vi bortser da fran osystem,_
tiserbara fel som tankefel, skrivfel och rena raknefel som har med den person so;,

skoter arbetet att gora. Felkillorna kan sammanfattas under tre huvudrubriker:

modellen motsvarar inte exakt den observerade situationer,

1. Den matematiska n o
ktformig kula, ingen friktion.)

(T.ex. snore utan massa, pun

5 QOsikerhet i empiriska data. (T.ex. pendelldngden, tyngdkraftaccelerationen,)
maste anges med dndligt anta]

3. Fel som uppstdr under utrikning. (Tex. attm
beriknas exakt.)

siffror och att kvadratrotier i allménhet inte kan

[ detta avsnitt ska vi ge en introduktion till fel av den tredje typen, medan behand-
lingen av fel av de tvd forsta slagen overlamnas till andra amnens foretrddare. Rent
utrikningstekniskt finns det inget att gora at dessa fel. I kapitel 3 dterkommer vi
dock till frigan om hur mycket fel av den andra typen kan paverka resultatet. Denna
friga berors ocksa pé sid. 45.

Vad #r det mest
utmirkande fér
rdkning med dagens
moderna datorer?

Att man aldrig
férr kunnat ridkna
fel s34 SNABBT som
nufdrtiden.

Exempel 1.45 A e

AN p'e"iglas';;ai%adgr\; Vet att de exakta viirdena av sidlingderna av en rek-

métten (i cm) a; = 3.76 4. och ﬂ Mitning med ett skjutmatt gav vid ett tillfalle

matt) gav ay = 4 fespéktivfipekmée by = 5.12 medan en enklare metod (8gon-
2 =5,

40 Ingen av metoderna kan forstis ge de exakta



113 Numeriska hercikninpgar
viirdena a och 3, men man uppskattade de bada metadernas noggrannhet och fick
Aﬁﬁ[hhf!‘:ﬁé]”

e A , o
3.74 < o 3.78, 5,090 < 4 5.15
; , 7
3<a<4, 4<pg<g
Om vi for ett 6gonblick litsas att ay, by, as och by #r exakta virden sd kan vi rikna
ut skivans area och far (i cm?)

A1 = (I-lb[ = 192512,
AQ = ﬂQbQ == 3,

Emellertid géller att det exakta virdet A av arean ges av A = aff. Tva fragor

uppstar nu:
I. Hur ndra A ligger Ay respektive A5?
2. Hur manga decimaler ér det rimligt att ta med i A7

I detta avsnitt kommer frigor av detta slag att diskuteras.

Lat a (las a-tilde) vara ett nirmevirde till en storhet med det exakta virdet a. Dif-
fe

rensen

Ea=Q—a (24)

kallas absolutfelet. Det giller alltsd @ = a + &, dvs.

narmevardet = exakta virdet + felet

Exempel 1.46 Bestim felet da 0.3 anviinds som nirmevirde fér =

Liosning: I detta fall kan vi gora en exakt berakning, Felet = 0.3 — 3=

Om béde @ och a idr kinda si kinner man ocks3 felet Eq, Men normalt 4r det ju inte
pé detta sétt. Vanligtvis kiinner man bara en Jelgrins, dvs. man vet att ¢, uppfyller

en olikhet av typen
leal < 8.

kan namnet p4 storheten utelimnas. Vi skriver alltsd i s3 fall istillet

Generellt giller att d4 ingen tvekan rader betriffande vilken storhet som avses si

le| < 6. 25

Olikheten (1.25) kombinerad med (1.24) ger, eftersom |@ — a| = |a — al,
la—al <beller —6<a—-a<ddvs.a—-8<a<a+d.

Istdllet for detta skriver man ofta
a=a-dté.
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Kapitel 1. Grunder

Detta ar egentligen en svért missbruk av likhetstecknet, men . samtidigt ey

tiskt och allmanl vedertaget %knvmn Man fir nalmll;‘i‘“/l S inte f6rvixly rkum -
F' (!1

skrivsittet a2 4 & = 42 vid l6sning av andragradsekvati tioner. Obger,
ver
ocksa att om vi hm a=at+dochb=0a+6si [6ljer inte av detta att ¢ — = b
o~ . -
a-8 o (52
e ——— e —— e e — —f
o %

Exempel 1.47 Vad menas med att ett nirmevirde har stérre noggrannhet 4n et .
nat? Oma = 2+ 0.50ch b = 10 & 0.8 s3 4r felgrinsen i det senare falle
A andra sndan utgor felgrinsen 0.5 en fjirdedel av nirmevirdet 2 medan felgrins

0.8 utgdr 8 hundradelar av 10. Vi har |22 2| < 0.25 och (b 10' < 0.08.

205 AN
1Oto.aL::::::::m

Detta visar att det finns anledning betrakta relativa fel.

Definition 1.4 Lit a vara ett nirmevirde till ¢. D3 har vi
€a =a—a absolutfelet,
leal < 6, absolutfelets grins,

£ .
To = — relativfelet.
a

Definitionen av relativfel innehaller a som ju i allménhet ir okint. I praktiken er-
sdtter man darfor ¢ med @ och far

™

=3 (26)

relativielet ~ ==
a

Exempel 1.48 Antag att a = 2.015 £ 0.00005. Berikna relativelets grins.

Lésning: Vi har ¢ = 2.015 och 6, = 0.0005. Detta ger

€a
a

€a ‘€a| 5
o < 024814.
a ~ 2 015 ~ 2.015 gl

Tecknet < kan utldsas “approximativt mindre 4n”.

Om vi skall ange en felgriins bor vi inte ta med mer in tva siffror (nollor i borjan
och slutet ordknade). Relativgriinser ges vidare ofta som procent eller promilletal.
Svaret i detta exempel kan ldmpligen anges som 0.25 ©/,, eller 0.3 ° /.

For att pa ett enkelt sdtt ge en uppfatining om det absoluta respektive relativa felet
anvinds begreppen korrekta decimaler respektive signifikanta siffror.
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1.13  Numeriska beriikningar
Definition 1.5 Narmevirdet & til] o sigs he
o] £0.5-1077,

l{idg.

t n st korrekta decimaler, n > 0, om

Exempel 1.49 Niarmevirdet i

a =0.073+0.0005 har 3 korrekta decimaler
b=0.073+0.0006 har 2 korrekta decimaler,
c=0.0734+0.0004 har 3 korrekta d.ccitinai@r:
d=1.740.1 har 0O korrekta decimaler,
z=1.73+0.05 har 1 korrekt decimal.

I mdnga sammanhang ir flyttal anvindbara. Det innebir att vi anvinder en taldel
och en exponentdel {or att beskriva talet.

Exempel 1.50 570000000 kan skrivas 0.57-10° och 0.0000057 som 0.57-10-5.

Om man gjort en ldngre berdkning pa dator och inte riktigt vet storleksordningen pa
de tal som skall skrivas ut r det limpligt att presentera resultatet i form av flyttal.
Datorer anvédnder internt £.6. flyttal med basen 2.

Lat oss anvdnda flyttal i féljande form:
a=t-10", 0.1 <t < 1, m heltal.

Talet ¢ kallas faldel och m exponentdel. Det finns exakt ett sitt att skriva ett god-
tyckligt tal @ # O pé detta sitt.

KAN DIN RAKNEDOSA
RAKNA MED

NEJ DV, DEN
GAR PR TWANLIGA
ToRRBATTERIER .

Definition 1.6 Antag att niirmevirdet a = t- IOm. skri~vits som ﬂy.ttal., 0.1 < t‘ < L
Om taldelen f har n korrekta decimaler sé sdger vi att a har n st. signifikanta siffror.

Om @ har en felgriins si maste vi forse den med samma exponentdel som a enligt

foljande exempel.
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Kapitel 1. ( Srunder
Signifikanta sjf
> IR

Exempel 1.51 !
Flytia
atd Korr. decimalet - }/ T i
e 70,30 0.005) - 10 2
0.030 + 0.0005 3 (0.6 0.04) - 10 1
{ » { 9 \ : i = L A
”'90(1"!7 Q,Ul:g " P; (0.227 0.0009) - mj 3

9.2+ 0.05
Alla d ista talen i plet har 2 signifikantd siffror, men ocksa Samma grin;
Alla de tre sista i : e " att s O
Alla de (76 20 et namligen 5/220- P4 sam som antalet korrekia decimle
for det relativa 1e1E% et signifikanta siffror upplysning or
pplysning om era ffror r m s& ar beloppet av de
an inser |
t5-107"

ger u
det relativa. M
relativa felet hogs

L4t oss nu titta pé ett par multiplikationer:
1.001-1.5 = 1.5015

1.0001 - 1.5015 = 1.50165015

en blir summan av antalet decimaler i faktorerna. Om vi
decimaler i talet. D4, om inte forr, blir vi

odukt
avrundning enligt foljande

dJukten sa far vi 16
{ korta av talet. Vi gor det genom

Antalet decimaler ipr
kvadrerar den sista pro
sikert intresserade av at

huvudregel:
Om ett tal med fler dn ™ decimaler skall avrundas 1ill m decimaler viiljer vi det tal
som ligger ndrmast.

en extraregel, eftersom 0.1 och

Om vi vill avrunda 0.15 till en decimal sa behovs
0.2 4r lika starka kandidater enligt huvudregeln. Vi
siffran i det avrundade talet blir jamn.

viljer d4 att avrunda s4 att sista

Exempel 1.52 Avrundning till n decimaler.
Avrundat tal @ Avrundningsfel @ — @

Tal a n
1.6329 2 1.63 —0.29 10~
1.16‘;55 9 1.64 0.5-10~2
—~1.7! 1 -] R 0.5-10"
) ‘ : —0.5-1071
. i.gzggig 5 —1.37685 0.1 « 302
~27) 9 4 —1.3768 0.49 - 104
2, 0 3 0.3-10°

Felet ir till beloppet hé
Lt a vara d ‘“"’Plpl—l hégst en halv enhet i den sist medtagna decimal
, ra det tal vi far ; imalen:
ning dr beloppet Jar om Vi avrundar talet a till n deci : ;
pet av avrundningsfelet hisgst 0.5 - 10— cimaler. Vid korrekt avrund-
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113 Numeriska beriikningar

vi skall nu (itta ndrmare pa vad som hiinder dd man anviinder de fyra raknesitten pa
”r;grmfvéﬁr«”ﬂﬂk‘“t Vi birjar med addition av a och b.

{hr I j’ {€I l /”) : {h : i”) {”‘ I Il) I ( (1, } ':f/}.

knar felet 1 summan med e, 44 och far:

Vi beteckna
E”v"l”i? = ((I ;:‘:' !’) e (\r” ‘I‘ 1})} _— {;‘“' :< f/!;

leats] = lea + b < lea] + les] < 84 + 6.

vid subtraktion far vi pa liknande sitt lea—b| = [€a — €8] < |eal|+lesl < 6,+65 och

srmed visat foljande sats:

har dé
Sats 1.5 Vid addition och subtraktion skall felgriinserna adderas, dvs.

6&—{-5 - 6(1, - 5(;,
6a—b 6(1, . 5 65-

Exempel 1.530ma =1.7+0.050chb=1.640.05sddra+b=3.3+0.10ch
g — b=10.1210.1.

Vid multiplikation av a och b far vi

~

ab = (a+e,)(b+ep) =ab+ be, + acy + &4,
Eap = ab—ab=be, + acy, + e, 6p.

Vi dividerar med ab och forsummar den sista termen, som normalt &r liten i forhal-

lande till de 6vriga, och far

€ab __ Ca €y

b  a b
Fér att komma Over till felgranser behovs terigen triangelolikheten:
5a 5()

Eab Ea Eb €a lsb
Cab| . |%a | Eb| ~|Za) (28| < Ja g TB
v ol i S el el PR TR

Hojgerledet 4r alltsa en grins for det relativa felet vid multiplikation. Med litet mer
arbete kan vi f4 en liknande regel for division och vi kan sdledes formulera toljande
sats.

Sats 1.6 Vid multiplikation och division skall de relativa felgrinserna adderas, dvs.

o fa
jabl ja] {6l
fp B B
o~ Tl TR
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Crrmrtnl 1
f‘.c!?‘h""‘»” [
X2

,

g " rledet er atta
I praktiken masie a !
y 7 1)+ 0.5. Hur stort kan det abgq, ..
) | 0 050ch0 ‘ e AH ITTPN
S 1 ha J U ) ‘ ¢ Y
Exempel 1.54 Viha 1 och kvoten a /b
c 4 . 11 produkicn @@ B
f‘- |
19 Vi beriaknar féras a
: b o~ alb ().2. Vi berdknar fi St der
0 och a/0 /

qligt Sats 1.6 ar
- far relativfelet, SOM nhgl
005 , 09 _ 4 075.
2.0 10
; ~ 17/bl - 0.075 = 0.015. Svaret
I~71 0075 = 1.5 och é(r/h = (L/b y ) ) aret pj
| 1 /h = —0.2 & 0.015.
aledes ab = — 2@ -+ 1.5 OCh_ a/ b = UDZ -}i U
ndet mellan relativfel och antalet signifikant,

. ! : s ninoar vid multiplikation och divi.
ller att gora noggrannhetsbedomning p iv

ki att utnyttja samba

ISKNL ¢

d/m for hand. Vi har d-virdet med 3 signi.

Exempel 1.55 Vi skall berdkna ¢ = i it :
o el och tinker anvinda ett m-vdrde med 10 decimaler for sikerhets

skull”. Ar detta imligt?

Losning: Tar vi 7 ~ 3.1416 sé far vi 5 signifikanta siffror i ndimnaren. Ndmnarens
relativa felgrans blir d& ndgon hundradel av téljarens och kan forsummas. Det récker
allisa gott med fyra decimaler i virdet pd .

Exempel 1.55 4r ett specialfall av foljande problem: Hur mdnga siffror bor man ha
med vid numeriska berdkningar?

Forst kan vi konstatera att datorer, genom att de arbetar med flyttal, har ett fixt antal
signifikanta siffror. En foljd av detta blir att talen ligger “titare” kring 0. For att
Hlustrera detta kan vi tinka oss extremfallet att vi bara har en siffras noggrannhet.

fxe,mpeigl 56 Om vi rdknar med 10 siffrors noggrannhet s har talet 1234567893 =
'L:«'--)wﬁ { dz‘j. 10'9 som néirmaste hogre tal 1234567894 = 0.1234567894 - 10'°.
“roe avslandet ar 1. Dédremot har talet (), AERmR

dvs, et avstling p4 1010 r talet 0.1234567893 som granne 0.1234567894,
0 { 9

= e va A Y
$3 1 . \
6148 uo'zi’.\.'xuo'silit&o: 7 =

Som Mustration il an pik

Lol g om 1l at 1‘}ing med niirmeviirden i lite "eljest™ |
nejd) kan nimngg alt "vanliga riknelagar” intzljtfstt\“ (Sonil?et e
, ‘ agg chover giilla.
xempel 1.57 Antag att vj raknar me
(0.010-0.020) . 39

0.010- (0.020 . 39

3 decimaler. D4 ir

46 = 0.010- 0.6 = 0,006,



1.14  Funktioner
Om vi rdknar med tvé siffrors noggrannhet giller (.ex
(0.045+0.14) +1.4 = 0.18+14 - 16
0.045+ (014 +1.4) = 0.045 +1.6=1.5

Om man riknar med narmevirden kan det alltsa spela roll i vilken ordning opera-
tioner med lika prioritet utfors. Det finns en tumregel som siger att en s e
positiva flyttal skall berdknas si att de minsta termerna S@,J_rnrnw’/m forst

Vi avslutar detta avsnitt med att peka pa mojligheten att gora numeriska experiment
esr att £3 ett visst grepp om de fel som finns i ett resultat, D3 man anvinder dator 4r
det i manga fall enkelt att géra om beridkningen med fler siffrors noggrannhet. Den
skillnad man far i resultatet kan avsldja hur stor roll avrundningsfelen i mellanresul-
taten har spelat.

Om man vill skaffa sig en uppfattning om hur kiinsligt resultatet av berdkningen
4r for fel i indata kan man gora s.k. experimentell stérningsrikning. Man tar helt
enkelt och varierar indata ndgot, eventuellt slumpmassigt, och observerar hur stor

sndring det blir i resultatet.

Exempel 1.58 Lat oss dtervinda till plexiglasskivan i exempel 1.45. Experimentell
storningsrakning innebdr i detta enkla fall att vi stoppar in ytterlighetsvérdena for o
och (3. Det ger for skjutméttet 3.74 - 5.09 < o8 < 3.78-5.15, dvs. 19.0366 < A<
19.4670. Detta bor skrivas A = 19.25 4 0.22. For 6gonmadttet far vi 12 =3 -4 <

af3 < 5-6 =30 sombor skrivas A =21+ 9.

1.14 Funktioner

Det moderna funktionsbegreppet har vixt fram stegvis. Pa 1830-talet insag bl.a.
Dirichlet att de d& existerande definitionerna av begreppet funktion inte var till-
fredsstillande. Dittills hade en funktion sagts vara ett “matematiske uttryck”. Dirich-
let undvek denna vaga fras genom att siga att y &r en funktion av z om det till varje
z i ett givet intervall svarar ett entydigt bestamt virde pa y. Han poidngterade att det
inte 4r av betydelse om beroendet av z, i hela intervallet, kan beskrivas av en eller
flera lagar och att beroendet mycket vil kan fa vara beskrivet pa annat sétt dn genom

matematiska operationer.
Dirichlets definition stimmer ritt val med den idag allmant accepterade. Ibland
uttrycks definitionen pa foljande sitt: En funktion dr en mdngd av ordnade par,
sddan att tva olika par inte kan ha samma fb‘rstakompomlfl?t. I denna pok k.ommer Vi
inte att ha nytta av en s4 allmént hallen och abstrakt definition, men Vi kanomte heller
acceptera Dirichlets inskriankning "...... i ett givet intervall.....”. Vi mdste kunna
tinka oss funktioner definierade pé vilken sorts mingd som helst. Déirpmot ar det,
for véra syften, inte si viktigt att fundera Gver vad en funktion egentligen dr. Det
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Imiingd av A svarar ett entydig,
f fran A till B.

viisentliga dir att om det 1ill varje element @ i en de
bestiimit element ¢ i 13, si foreligger det en funktion

funktionens definitionsméngd och den delm@ngd av B
nktionens vérdemdingd. Vi anvinder beteck-

. . " 5 sr virdemingden till funktionen £,
ningarna Dy for definitionsméngden och Vj for v g i

Om vi betecknar funktionen med négon annan bokstav, tex. g, F' eller y sa b“f
naturligtvis beteckningarna for definitions- och virdeméngderna Dy, Dp, D, V,,

Vr. respektive V.
Enligt vért synsitt skulle egentligen uttryck som “Trycket dr en Junktion av ....”,

"Krafien dr en funktion av ...”, ”......som dr en funktion av bdde tiden och lige ..”
vara meningsldsa och kanske t.o.m. farliga. Det visar sig emellertid 1 praktiken

inte vara nagot storre problem att anvédnda ordet funktion i flera olika betydelser.
fraserna ovan svarar det ndrmast mot "beror av”.

Man kan uppfatta en funktion som ett slags “maskin” dér man kan stoppa in ett
fran definitionsméngden och fa ut exakt ett motsvarande y fran virdemingden.

Delméngden till A kallas
som innehaller alla tinkbara y kallas fu

I'text vill mg . e g b
, g é‘;ﬁi;‘jl;n ofta ange att z och y dr forknippade med varandra genom funktionen
. man vanligeny = f(z). Detta utliises "y dr lika med f (av) 2.

Man llampar i manos «
par 1 minga sammanhang ett geometriskt synsiitt, som anknyter till fi-

guren med "bubblorng” oy .
e an och sj ; .
foljande alternatiy, skrivsii(: ager all ¥ avbildas pd y. Detta synsitt har lett till

Ly T avhildac & ]
v avbildas pé y (eller bara ” pa y”)
H

f AW . :
Y e
oy f avbildar 4 pay,
L Y

Da z och y j

i Y ar (al kan man illye
en funktionskurys n iHlustrerg funki; i

urva eller gy 1oner 1 ett koordin '
: ) atsystem med hjilp av

pe d hjélp a

* avbildas ay f pay




I.14  Funktioner

4" 4y By

En linje pamllell med andraaxeln (y-axeln) kan skéra en funktionskurva i hdgst en
punkt. Skulle det finnas fler skidrningspunkter sa dr det ingen funktionskurva; vafic
¢ i definitionsmédngden skall ju svara mot exakt ett y. o

Exempel 1.59 Sitt A — B = R och definiera funktionen A genom h(z) =
~1/y/z. Vi fardd Dy, = Ry ochV;, = R_.

y=hw

:

22 = 12, Detta samband definierar
funktionsdefinitionen att till varje
— 9 de motsvarande virdena

Exempel 1.60 Mellan x och y rader sambandet
:nte en funktion z ~ y fran R till R. Vi kréver jui
r skall hora et enda y. Hir far vi exempelvis for x

gy =2 och g = —&

Exempel 1.61 Sambandet i foregdende exempel definierar en funktion z ™~ Y fré’uol

Riill {y:y > 0}, ty nu svarar mot varje virde pa x el entydigt bestamt yﬁrde pa

y. Liksa definierar sambandet i exempel 1.60 en funktion z ~ y frin Ry till Ry.
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¥y o’ /
QQ Y
. 7
14
o5 A Ll
E—— prrrrTf T 1
och y utan sven de mingder man ytgs,
hart <ambandet mellan © jO(’h S Jtvis brukar man ang w‘jj%m
o en funktion- Vanligtvis DrEaer = ) ange definj
farstar att definitionsmingde,
gden

Vi ser att inie en B
par man angel
q 1ater man

XCmp@] pé dGlt

pli detta och U
a dr:

- viisentliga
den, men oft
iligt. E

ifran ar

(jonsmang

ror som Mo
nsméngd

a m('jj]iga definitio

arsas
Funktion Storst
\/T“"'j T Z 3
y == xr “" " ?é O
- hela i
Y 14+ $2
y = \4/2—’35'2 ,xié 2
Exempel 1.62 Antag alt A = R? = {(= y):x €L ochy € R} och B = R.
Definiera f genom
f(a,y) = 4a® — 3.
Di 4r f en funktion frén hela R? till hela R.
. !
| @®
J:?; [ NN .o .1 & i PR z
g e e :“i"x -z‘ﬂTi"v
“ 4D
Q Exempel 1.63 S 3 - . .
Sambandet | 2| = z2y? definierar inte ndgon funktion (z,y) ~ 2.1

(,y) = (1,1) ger z = 1 eller z = —1.

Funktioner frin R? (i :

koordinatsystem. .Jléirrt:t]"(!irlfcl;ann:g(ljlster% som funktionsytor i ett tredimensionellt

definierar en funktion (z, y) , ckvationen for ett plan i r ju @

o ktion (2,y) ~ z och vars geometri : ?fmden som ju (1bl.and)
riska bild dr en (plan) funktions-
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" 15 Invers funktion

=111 fAaner fra 2 2 o .
Funktioner fran R# till R brukar ka]las‘funku'o.,l@],, av vé variabler

Exempel 1.64 Sitt A = Roch B = R2 och definiera ¢ genom 0t~ (z,y) dir

2 oc (

x = 3t? ochy =t + 1. Vi far d& exempelvi 19 o :

! pelvis ¢ (2) = (12.3 _ a9 @
o(~1) = (3,0). #(2) = (12,3). ¢ (1) = 3,2)

Hir giller D, = R och V,, = {(:c,y) |x =3(y— 1)2}.

For en funktion f kallas ofta f(x) funktionsvdrdet i punkten z. Dirav bl.a. namnet
virdem#ngd. Frasen “funktionen f(z)” &r egentligen ologisk. Emellertid uppstar
inga missforstdnd om man tillater sig sdga sd. Det visar sig t.o.m. praktiskt att i
vissa sammanhang blanda y och f () och skriva y (z), speciellt i samband med
differentialekvationer.

1.15 Invers funktion

Om man férssker kora en “funktionsmaskin” bakldnges pa element ur V; kan tvé
saker intriffa. Antingen f4r man ut et enda element som tillhor df:ﬁ nil.ionsm:a’ngden
eller ocks sprutar maskinen ut flera element. I det forsta fallet ar tul}knonsma‘shr.\'en
en funktionsmaskin dven di den kors bakldnges. En sddan funktionsmaskin siigs
vara omvéndbar. En funktion dr alltsd omvindbar om tvii olika element iD f aldrig
svarar mot ett och samma funktionsvirde i V. Med hjilp av implikationspilar kan

vi formulera detta pa foljande satt.
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K ﬁm’r“i / g},gp,‘gﬂg;«’(f'f‘
4 . v e s Adbay ON let for ¢ “ i

. o f 0 myvdndpadr OmM Aet 10r alld 7 och » )
e 1.7 Fn funktion f dr One LOCh 20 € 1y .
Definition 1.7 10 2 € Dy gy
atl
f(x)) = f(x2) = £1 = T2, B

|.27) iir ckvivalent med

Vi noterar att (-4
T 7—/ T9 o l (.‘TIJ // / (!lﬂjj_

o1 den andra funktioner i exempel 1.61 4r omvind

[nte den forsta men v 41 den andra funktion n’ ﬂ W) H ”1 O ar omvandbar, [ 5,
\cksa marke till att (1.27) och (1.28) har en enkel geometrisk tolkning fér furke.
OCARDE B . e cta_aveln (reaxeln) far Lo L R
f5n R il R; varje linje parallell med forsta-axeln (z-axeln) far skira funkijoge,,
hiost en punkt.

gral 1 nog.

\es
—f s

71T~

LAt oss nu titta ndrmare pa den omvindbara funktionen A i exempel 1.59. I deta
fall foreligger ocksa en funktion y v 7, SOM kallas for inversen av h. Man brukar
anvinda beteckningen h—1 som utlises “h-invers”. For att fa det funktionsvirde

y = i

h(z) som svarar mot x startar vi p4 den horisontella forstaaxeln (z-axeln) och
gér, via kurvan y = h(z) till den vertikala andraaxeln (y-axeln).

/ Y

Pd

B S

xel, :li"
andrad-
Vi har

Fa grund - s
; y%lrl : qudv umy:ndlmnhcl.cn kan vi ocksé ta den vertikala axeln som forstad
il kurvan, vika ¢ vh o ¢ ; g am N
axel. P della = !“‘ av och gi Gl den horisontella axeln, som da tjanar som
: lelta satt ger var figur ocksd en bild av den inversa funktionen Bt

{ chz = 5! (! r - ~ enk: de al
‘ v } 5 l)c“.' aoQr P S§ QF S o
diolkalomi ) ssa (vil samband uttrycker samma ak
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115 Invers funktion

ore det emellertid bra om vi .
Nu ‘_Q“‘_dd_‘fﬁ' ‘_ ‘*“f‘ ,{ [‘“' mwvi k\"ﬁ"”d‘r' ntain kl’!l vany = h=(x) i samma diagram.
vi vill rita inversens kurva med forstaaxeln pekande dt hoger och med andraaxeln
vertikal, riktad rakt uppit. Da skulle vi littare kunna jamfora i och "', Vi kan

opra sa har:

%ﬁ{g
1
d
AV

. R,

I den vinstra bilden har vi vridit systemet for att fa férstaaxeln horisontell. 1 den
hogra har vi speglat for att fa forstaaxeln att peka &t “rétt” hall.

Y
I A
. 9 / [ /\‘J
- 0
'J’g @/ | R
ld:‘n (»)
(P 1<
“'90. : \‘r’ . . _} s = — g =_% ¥
H [’ 1 .-
s 39{(‘)
4? b
]
4 / 5"

I'den vinstra bilden har vi bytt beteckningar; @ mot y och y mot x. I den hogra har
viritat in b4da kurvorna i samma diagram.

Virt resonemang om kurvorna ger en idé om hur man ska kunna bestdimma det
uttryck som definierar inversen. Man startar frdn y = A(z), dvs. Lex. y = —1/\/.
S8 16ser man ut z vilket ger z = 1/y?, y < 0. Direfter &r det bara att byta & mot y
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o

5 ary = 1/22. ¢ < 0, vilket 4r den sokta inverc.
och y mot 2 s§ att man fir y = 1/2?, & < 0, vilket ¢ ORM Inversen 4, N
R . . - |
funktionen h(z) = —1/\/2.

Kapitel 1. Grunder

) o weket for inversen till funktionen ¢ definior.
Exempel 1.65 Bestim uttrycket for inversen (il g definieraq &enqy,

. o o .
(?(J) = .FJ ’ ﬂp, € CV? ()“

Losning: Vi siitter forst y = A | 0"‘! !ﬁc;w ut = som funktion av Y. Degry .

= *t\r'u 1. Men eftersom vi har x < 0 s duger inte plusteckne toch y; ,

—— ar

x = —y/y — 1. Slutligen byter vi z mot y Och y mot x och fir y = ﬁ I dv.
;q"[?”‘l {l = =af — ]_.,

Kurvorna y = h(z) och y = h=1 () i den sista hogra figuren ovan 4 yamwa
spegelbilder i linjen y = =, fOrutsatt att man anvinder samma skala p3 ;. och |
axlarna. Detta dr ingen tillfillighet. Bytet mellan z och y svarar mot ep a«/Fma
som avbildar varje punkt (z,y) p en punkt (y,z). Denna avbildning 4 j,
spegling i linjen y = =.

!

§29] \

I‘J\f \J‘

.’

&y

Det resonemang som vi genomfort for funktionen 7 4r generellt och giller for varje
omvéndbar funktion. Vi sammanfattar det hela:

Antag att f : = ~ y dr en omvindbar funktion fréin A till B. D& har f en invers
funktion f~1:y ~ x frdn B till A.

For alla = € Dy giller y = f () & o = § “Yy) och for defnitions- och
vdrdemingderna giiller D, = =V} och Vf 1 =D




1.15  Invers funktion

HUR MENAR DU ? B ( J{SO 3}\6 MENAR ATT "\
F£3RST FUNKTIONEN — | INVERSEN \
of INVERSEN PA 0GOR DET SoM

RESULTATET OCH FUNKTIONEN GOR ! J
MAN AR TILLRAKA ¢ 1 e — = S

En speciellt viktig klass av omvéndbara funktioner fran R till R utgors av de string?
monotona funktionerna. 1 foljande figurer illustreras en viaxande funktion, en avta-
sande och en som varken dr vixande eller avtagande.

Y, 44 g
VR

Den formella definitionen kan formuleras pa foljande satt:

Definition 1.8 L4t f vara en funktion frdn R till R och 14t I vara ett intervall. Da
sigs f vara

a) striingt véixande pd I om x1, T2 € I,z <xg= fm1) < f(z2),

b) stringt avtagande pd I om 1, T2 € I,z <z2= f(71) > f(z2),

¢) striingt monoton pa I om f antingen 4r strangt vixande eller strangt avtagande
péhelaI.

Foljande tva exempel syftar till att illustrera var definition och inte till att ge en prak-
tiskt anvindbar metod. I praktiken anvénder man istillet oftast derivatans tecken for
alt undersoka vixande och avtagande. Detta kommer att behandlas i kapitel 4.

Exempel 1.66 Funktionen f, definierad genom flx) =2 — a2, dr strangt monoton
pal=[L 1],y vilj tva godiyckliga tal 21 ochwg i I, xy < wp. DA
, I . .
f(z1) — fl@2) = T1—T17 (w2 — x3) =
= (zg—a1) (@1 22— 1)
Men bada de (v parenteserna i det sista uttrycket dr positiva och saledes giller
Hzy) > f (x9), dvs. f &r strangl avtagande.
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Kapitel 1. Grunder

DA [—9
I 7 Vi F(z) =1/(1 + :1:2) dr strangt monoton pa | —2, — 1].
txempel 1.67 Visa att f(x)

ktuella intervallet och studera f (1) — f(z3). vj g
IS ® R Faef© : . ., 2 |(‘l ” ()l”(\: “ l 2 el » 3
osning: Vilj r, < xyide |
ll ) | I 3 +1—xz7 —1
! . e TP "‘""‘*51'7 =
oy % m——t— T
(w2) = T3 T 72 + 22) (1 + z2)
F@1) = flag) = 1+ :ITf 1 + x5 (1+x7) 2

(g — 1) (T2 '{'”,";;;l) .,
(1+ %) (1 +z3)

i < 0. Vidare r, enligt antagande,
Sfersom bde 2 och zy r negativa dr 23 + x1 < 0 barligen 4r positiy,
B ‘ace()b ; dan de tvd parenteserna i ndmnaren uppenbarligen &r positjy,
T2 — I > U medan - 4 strangt vixande.

iglcdes ir f(z1) — f(xg) < 0och f alltsd strangt

E I 1.68 Funktionen i det foregdende exemplet dr ddaremot inte stringt mono-
‘xempel 1.
ton pa hela R ty vi har t.ex att

1

—2<3och f(-2)==> > 10

= £(3).

ol =

Varje strangt monoton funktion har givetvis en invers. Om f #r str'zingt monogm
= O .. .
folier ju enligt Definition 1.8 att om z1 # x5 si 4r antingen f (z1) > f(z2) eller

f(z1) < f(x2) dvs. att f(z1) # f(x2). Ur Definition 1.7 foljer da att f 4r omvind-
bar. Vi har dirmed visat foljande sats.

Sats 1.8 Varje stringt monoton Junktion har en invers.

(=4

Inversen till en funktion har alltid

en invers, ndmligen funktionen sjalv. For alla
omvandbara funktioner gller sdledes

()" =1

Om vi byter ut villkore F(@1) < f(x9) och F(x1) > f(2y) i Definition 1.8 mot d¢
svagare villkoren flz) < f (2) respek

. | tive f(zy) > f (22) sa far vi definitionen
il "“W”d‘; respektwe avtagande. Definitionen innebir bl.a ag en funktion som ir
0 nstanl: Pa etl intervall siigs vary bage vaxande och aviagande dér. Detta kan mojli-
gen tyckas mirkligt. | e o bicker anvinder A0t :

P man dirfor 3 ande
istillet fér vixande. utirycket icke WHAE

Exempel 1.69 | figuren
pen,

nedan illustrerag dei Definition 1 7 och 1.8 infsrda begrep-
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116 Sammansatia funktioner

[ ar f vixande.

[a, b] dr f avtagande.

{b, c| dr f strdngt viixande.
pi intervallet [c, d] & f stringt avtagande.

[

[

[

a, b
a,

__“__a

P4 interva CT
Pi intervallet
et

P4 intervall

Pi intervallet [d, €] 4r f stringt vixande.
pa intervallet [a, ¢] &r f monoton, men inte strangt monoton.
P4 intervallet [a, d] dr f inte monoton.

1.16 Sammansatta funktioner

Om man tar bort ytterhdljet pd en maskin kan det ibland visa sig att den &r sam-
mansatt av tva eller flera maskiner. Sa forhéller sig det ofta dven med “funktions-
maskiner”.

. — —

En sadan funktionsmaskin, som #r uppbyggd av forst f och sedan g, spottar ut

g(f (z)) om man stoppar in ett x € Dy. Ett vanligt sitt act skriva dr g o f som
utlises ”g boll f” eller g ring f”. Vi har alltsa (g o [)(x) = g(f(x)). Givetvis
forutsitter en sidan hir sammansittning att det element f(x) som kommer ut ur f

och skall in i g verkligen tillhor Dg.
Vi sammanfattar resonemanget och formulerar det utan maskiner” pa foljande satt:
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Kapitel 1. Grunder
Definition 1.9 Den sammansatta funktionen g o f frén A till & definieras genop,

(g0 f)(x) = g(f(x)),
dir f v en funktion fran A (ill 13 och g en funktion fran B till C'

y = f(z) z € Dy
2 =gly) =9(f(z)  flz) €Dy
z=(go f) (@)

har varit tdmligen abstrakt. Det dr givetvis viktigt, bade for

Resonemanget hittills
Klart for sig hur man bildar g(f(z)) om

blivande ingenjorer och andra, att ocksa ha
f(x) och g(z) ar givna av kinda uttryck.

Exempel 1.70 Ange uttrycket for g(f(x)) om f(z) = z2 + 3z och g(z) =2z -8,
Lésning: Vi fir g(f(z)) = 2f(z) — 8 =2 (2% + 3z) — 8 = 222 + 6z — 8.

Exempel 1.71 0m f(z) = 22/2 och g(z) = —/2 — 2 fér vi (go f)(-2) =
g(f(=2)) = g(2) = -3. e / ar vi (go f)(-2)

k 2@?(-2)
b

’/VY= Fx)

A

8(f(¢-2)) = g(2)=-3

Den kommutativ: 4 i
e Koy al:\;: (: z;glfl(w §aller i mﬁngﬂ sammanhang, men inte i detta. Man far alltsd
go f och fogirsamma sak. Vi kan anvinda oss av exempel

1.71 for att illustrera detta
. Med exemplets i . =
F(9(=2)) = f(~1) = 1/2 medan (go fl))(jgi)’eiec_k;mgar har vi (fog)(-2) =
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1.16  Sammansatta funktioner
Foljande giiller dd@remot:
rf— | i r o B | v .
(f o) ) () =rf (I(')) x forallax € “/‘

och

(,[’If of” bi) ('17> = f(f ‘(-'17)) — o for alla z € I)f | = {/,,

Vid sammansittning av funktioner kan vi sitta parenteser hur som helst, dvs. den
associativa lagen

(hog)of=ho(gof)

giller. Detta ar inte alltfor svért att inse med hjélp av foljande figur.

Man kan alltsd skriva sammansittningar av tre (eller flera) funktioner utan par-
enteser, t.ex. h o g o f. Upprepade sammansittningar av en funktion med sig sjlv
kallas iterationer, av latinets iteratio = upprepa. Berikningsmetoder som bygger pa
iteration (iterativa metoder) kommer ofta till anvindning i praktiken. De passar bra
nér man har tillgang till en dator, for da kan man gora manga upprepningar pa kort
tid.
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Kapitel 1. Grunder , stererade funktionen
f(r) 2 och bestam den n:te HETELE
Exempel 1.72 Siatt /()

f (n st )
& , O o n SL. | '
fan=fofofo..0]

Vi fir fo(z) = (fo f) (%) = f(f{z))

Losning: Vi far fo(7) = (J 9

i) = 27 ie  Vill man resonera strikt logiskg by
e a3 sntligen ett induktionsbevis. Vil mak

(Har doljer sig egenthgen it

lefta induktionsbevis genomforas.)

E A€ ,EEEH E ] o d ~§ va ‘_ { ’:2 == i b "o 3 Q.i V

el '3 « [ ( £ ) = 1 s ].)C! I (;I' ! /
o a ] o ' I -2\ ’) —_— '3’],) — 1T
(Q 0 ('r) (/‘.7/:,- — A (___ xr ) P

och ) 2 - Z"4 — 1 /;’3/4 - Jq/’
”mv:‘r;'?’,LJ:(‘\QOQ)OQ)(LJ:Q(I_x) _—(1 T)

ller 2 4 6 _ .8

ell 2 _ AN =1—-4x*+ 42 z,
(gogog)(z)=(go(g0g)) (x)=1— (22% —z*)

Vad sidger du!? Ar det med
(hog)of=ho(gof)

precis som med
TRESTEGSHOPP?? 7?2

stegen och direfter det tredje
ger samma resultat som att ‘
férst ta det forsta och direfter

de tvd 8vriga ... ‘-J

m\

1.17 Elementiira funktioner

|
|
|
|

Ultryck av typen
‘ ) L 3 e wec Dmu
3at 42 g 4 16, W e
222 4+ 52 ~ 1854

3 g S .
1 5:::‘/2, cosdu + 5

4z

In(4 { x), ;':4/

ar Iran gymnasieskolans kur,
rationella funktioner,

sin 2x, arctan g
S Alminstone delvis kiinga, De dr exempel pé polynor,
Cxponential-, logaritm- och Potensfunktioner samt trigonomet-
60
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1.17  Elementiira funktioner
siska och cyklometriska funktioner. Dessa funktioner och sammansittningar av dem
utgor den klass som man brukar kalla elementéira funktioner. 1 detta avsnitt skall

. > 2 %o o 2 "\'.‘\ “L\«n‘ o - NQ O A 2 . ) N ' » o - .)A y S
vi repetera hur man definierar dessa och g igenom négera av deras grundldggande
= 1 2=y a4 ay i LD A 7 ¢ C

egenskaper. Vl .

1.17.1 Polynom

Definition 1.10 En polynomfunktion (ett polynom) dr en funktion som kan skrivas
y =p(x) = ana™ + @12 + .+ ayz + ag, (29)

dir koefficienterna ay, ..., ag ér givna tal och dér n dr ett naturligt tal. Vi har D, =

I detta sammanhang tolkar vi ag som agz® och de konstanta funktionerna uppfattas
ddrmed ockséa som polynom.

Exempel 1.74 y = 42 + 2% — 18z + /13 definierar ett polynom, men déremot
inte y = 423 + 521/2, ty exponenterna méste vara naturliga tal.

Exempel 1.75y =1/z = z—1 definierar inte ett polynom, dven om exponenten ar
ett heltal, ty exponenten far inte vara negativ.

Om a, # 0i (1.29) sdgs polynomet vara av grad n, eller ett n:tegradspolynom.

Koefficienten for den hogsta forekommande potensen av brukar man kalla for
" for ledande term. Alla de virden pd x for

ledande koefficient och termen Gn?
vilka p(z) = 0 kallas nollstiillen. Ett polynom av grad n har hogst n stycken reella

nollstillen. Mer om detta i avsnitt 9.6.

_ 5 dat 4 328 + 1220 — 642 + 4d dr av grad

Exempel 1.76 Polynomet p(z)
. ett nollstlle dr 1, ty p(1) =0.

fem med ledande koefficient 1 och ledande term xd

Exempel 1.77 Polynomet k(z) =4 for alla 2 ir ett konstant polynom, ett polynom

av grad 0.

Négra typiska grafer av polynom ges i nedanstiende figur.
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1.17.2 Rationella funktioner

Rationella funktioner definieras pa foljande sétt.

Definition 1.11 Antag att T och N #r polynom. Funktionen r, definierad genom
T(z)

N(z)’

kallas for en rationell funktion. Definitionsméngden D, utgors av alla z for vilka
N(z) #£0.

Ma) =

En rationell funktion &r alltsd en kvot mellan polynom pi samma sitt som ett ra-
tionellt tal &r en kvot mellan tva heltal. Polynom och heltal har en del semensamma
e%epskaperrj. J%imeb'r av exempelvis 3597 = 3 -10% + 5. 102 + 9? 10 + 7 och
ple) = 32° 452 + 9z + 7. Sttt gi ivisi ‘
s ol att gdrna upp divisionerna p(x)/(3z -+ 2) och 3597/32

Exempel 1.78 Funktionen r(z) — 2% +3z-8
nktionen r(z) = H 118216 T rationell, men diremot inte

_ 4 .
8(z} = W, Ly i det sista fallet dr nimnaren inte ett polynom

Varjc p()lyn()m ;c'll en lal- C ] i oV eﬁn]tlon a la
T s - Sey A ﬁ . 9 1 anstaende d iti "l‘
j\( (‘I’) J- 101 a”a £, I gur(’n Visas “agl‘a l'ati()ﬂe”a funktionels glafel '
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1.17  Elementiira funktioner

1.17.3 Potensfunktioner

Man kan definiera a® for godtyckliga positiva tal a och godtyckliga reella tal b. Om
vi haller b fixt och ersitter @ med variabeln z sa far vi en potensfunktion.

Definition 1.12 Funktionen z ~ y = z® (b € R, b fixt) kallas en potensfunktion.
Dess definitionsmingd #r tminstone R, men kan for vissa b-vérden vara storre.

Funktionerna f, g, h och p definierade nedan &r potensfunktioner med varierande

definitionsmingder.
fle)=2" Dy ={z;z >0}
g(z) = z'/3 Dy =X

h(_:ﬁ)::t;_]/‘/i Dy, = Ry
Dy = {mu #0}
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Kapitel 1.
o AV 2

1 1.79 Uttrycke

Exempe
ckall vara kons

ponenten

5 . 1eanktionen
1.17.4 lt,xpmwmmlhmklmn ]

. B 18 ea fix Jh va rierar
Om vit ol later a vara nixt och varitie

" entialfunkti
r g > 0kallas en exponeni! alfunktion me,

on 1.13 Funktionen ¥ ANY =0

Definiti
basen Q.
7
% Y, /
$7 vyt ! 1
1 A/ a I*
) ‘ “ \/\/
s@® = © = "'.’,_. p——T" ¥
1 x f : .

. Om basen dr talete =
12, 121) 54 skriver vi €” eller exp z. Nir
menar main normalt funktionen
a situationer, t.ex. da man

peciellt 1amplig eftersom

ds dven skrivsittet €XPa ¥ eller * exp

For uttrycket a® anvan
it definieras i kapite

9.7182... (e kommer &
man sager exponenﬁalfunktionen i bestamd form

ev. Exponentialfunktioner forekommer i praktiken i mang
hehandlar tillvixt och sonderfall. Basen € visar sig vara s
funktionen e” dr sin egen derivata.

o

Vi paminner om de viktiga rakneregler som giller for exponentialfunktioner:

1. aO:L

2‘ C{l % a’y — a$+y7

3. (a”')y = q”Y,

Exempel 1.80 Jordens b i
: . efolkning antas O o
innan folkméngden férdubblats? s ko el O i e RS -

Lissning: LAt N() vara folkmé
Nt +2) N :i(J(sz)/\\;T;)i folkméingden vid tiden ¢. D giller N(¢ + 1 r
gl oy Spréngvis“eﬁé;]]]\,] (¢4 z) = 1.03"N(¢), = heltal. Me )f— LONG)
géller for godtyckliga reeila lel a 4r. Det ir darfor rimligt att ut.gé 'fn° folkméngden
‘ al . Vi soker det virde pé ifrdn att formeln
, € pa x for vilket

dvs‘ J 0’2.‘17 o 2
VST = 2. Med hiilp av mini

alltsé kne Medhydlp av minirikn
appt 24 ar for befolkningen a(?;g?dkiﬂb]man se att 1.0324 = 2.0398. Det t
ubblas. e . Det tar
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1.17 Elementiira funktioner

1.17.5 Logaritmfunktionen

Fran gymnasieskolans kurs bor det vara kiint att varje exponentialfunktion med
ir striingt aviagande om 0 < a < 1 och striingt viixande om basen a I

P

basen a
Eftersom varjc exponentialfunktion med a # 1 alltsa #r strangt monoton sa existerar

i

inversen.
S
" et )
| gir =T
e @’«”’T;’%;_:y =

Definition 1.14 Inversen till en exponentialfunktion med basen a kallas for en loga-
ritmfunktion med basen a. Vi skriver y = log, z. Vi har Dyog, = Ry och Vipe, =

v}

.

Basen dr normalt ett tal @ > 1. Om basen dr e = 2.7182... anvinder vi beteckningen
Inz eller log x och talar om den naturliga logaritmen. Om basen dr 10 anvinder
man ofta beteckningen 1g i stéllet f6r log,, . I vissa sammanhang, t.ex. inom infor-
mationsteknik, anvéinder man inte séllan basen 2. Andra baser forekommer knappast
i praktiken.
Innebdrden av logaritmdefinitionen kan uttryckas pa foljande sitt:

y=a" <z =log,y. (30)

Vi kan ocksé skriva

y = qlo8a ¥

vilket ofta 4r anvindbart nir man skall behandla uttryck dir bade bas och expo-
2

nent r variabla. Vi far exempelvis 2° = e*n® g1/ = e(n@)/2" och generellt

flz)9=) = co(z)In f(z)

Riknelagarna for exponentialfunktionen har sina direkta motsvarigheter i rikne-

lagar {6r logaritmen:

—

. i(_)gall = O’

2. lf)[.fm T == l()g'a x + log, ¥,

W

- og, xV = ylog, x,

=

. loga;I == ——loga "L”
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5. log ;”Ewlw 2 = [ 3
J. log, .= og, = — log, v,
h).‘i" X
6. log v = —ob
31 .
log,, a
Dessa rikneregler visas med hjilp av riknereglerna for €X g'mnw;.rm;ﬂanmnen,
1 Vi w ; ma > 0,z >00Ch]
Exempel 1.81 Visa att log, 2¥ = log,,  + log, y om a > 0,z > 0ochy >0
log,, y. Dé giller enligt (1.30) att z = a” och
ntialfunktionen far vi zy = a’a”
log . xzy och raknere el 2 for logaritmey,
Za TY 1

Losning: Sitt v = log, @ ochv =
y = a*. Enligt rikneregel 2. for expone = gt
Men enligt (1.30) betyder detta att u +v =
4r diarmed visad.

: log,
Exempel 1.82 Visaattlog, = 7 ;
0g;, @
. Vikan s

- @ 7l
Losning: Sitt u = log,  dvs. Z = a* kriva om @ pé formen a = b%%:¢
och far med anvindning av detta

blogb a)“ — bt log,a — blog,z z-log, @

z=a"= (
Av detta foljer enligt (1.30) att log, Z = log,, x - logy, a och regel 6 dr ddrmed visad.

Exempel 1.83 I exempel 1.80 skulle vi ha kunnat anvénda logaritmer for att be-
stimma z ur ekvationen 2 = 1.03%. Logaritmering av béda leden ger nidmligen

g2 =zlgl.03dvs. z =g 2/1g1.03 ~ 0.3010/0.0128 ~ 23.51.

sonderfall giller formeln m = mge ™, ddr m ar
smnets massa vid tiden ¢, mgo dmnets massa vid tiden ¢ = 0 och ) en konstant.
Antag nu att ett radioaktivt mne med massan 230 g sonderfaller si att det efter 150
minuter endast Aterstér 170 g. Hur mycket terstér efter ytterligare 90 min.?

Exempel 1.84 For radioaktivt

[osning: Vi har sambanden
170 = 230e~**%%ch m = 230e~*?*,
Logaritmering (bas e, dvs. den naturliga logaritmen) ger
log 170 = log 230 — 150\ och logm = log 230 — 240
vilket i sin tur ger

240
150

logm = log 230 ~ (log 230 — log 170) ~ 4.9544.
Med hjilp av miniriknare finner vi m = ¢l98" 149
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1.17  Elementiira Sunktioner

1.17.6 Hyperboliska funktioner
De s.k. hyperboliska funktionerna bér man kinna (ill, trots att de egentligen inte
innebir nagot nyit; de ér helt enkelt speciella rationella funktioner av e”. Det visar

sig emellertid ibland praktiskt att anviinda dem. Vi har [6ljande definition:

Definition 1.15 Vi definerar

'y
9
et +e7 7" . .
coshz = —5 cosinus hyperbolicus
(‘U o e—:l)
sinhz = ————  sinus hyperbolicus ol X ¢
2 S J=2¢ |
: sinh x : b boli S o |
tanhz = angens hyperbolicus ' -
o
cosh : \/\
cothz = = cotangens hyperbolicus J
sinh
|

Man kan exempelvis visa att en fritt hingande jamntjock och perfekt bdjlig kabel
foljer en cosh-kurva.

Javisst ~ sd ldnge ingen
sitter pa traden.

1.17.7 Trigonometriska funktioner

De trigonometriska funktionerna spelar en central roll i minga sammanhang, t.ex.
d4 man behandlar svangnings- och rotationsproblem. Vi piminner forst om radian-
mdttet for vinklar. Antag att z ir ett reellt tal. Utgdende frén punkten (1,0) i ett
Ortonormerat koordinatsystem avsiilts lings enhetscirkeln (en cirkel med radie 1
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o > 00ochinegag

: sositiv led ( moturs) om T = L 1T gahvltd

( x| i posi sedan halvlinjen my,

» pa cirkeln. Drag se% 7 = = . :
pa cirk Fn radt vinke] Sye :
SVary,

och centrum i origo) avstinde
n o radianct. |

om x < (0. P si siitt fastliggs en Pl:“!ld v storleke
sttad vinkel av STOLTRRE

ion O och P Vi fhr en riktad vinket @ o cadianer.

origo O och P. Vi fan i helt vary mot 27 radianct

: - /2 radianer och €
siledes mot /2 radianer O
__(cosx,8inx)

(0,-1)

Vi kan nu definiera de trigonometriska funktionerna.

Definition 1.16 Lat z vara ett godtyckligt tal och vilj punktenoP péa enhetscirkelp
s4 att linjen OP bildar vinkeln & med forstaaxeln. Vi siger da at.t punkten P har
koordinaterna (cosz,sinz), dvs. cos z definieras som forstakoordinaten fr P och

sin = definieras som andrakoordinaten.

Vidare definieras

sinzx
tan 'z =
cos T

T cos X 1
x# — + kroch cotz = — e x # k.
B 2 sinz tanz’ a

Vi ser att sin k7 = () och att cos ( 32’- + k7r) = 0 for alla heltal k.

Vi paminner hirnést om ett antal viktiga trigonometriska Jormler som vi dock avstir
fran att bevisa,

Sats 1.9 Filjande samband giiller:

L. sin(~a) = —sina, cog (—a) = cos v

2. sin(m—a) =sina, gn (2 - @) = cos v

3. eos(r~a) = Cose, cog (I — @) = sin o

Y ‘& ‘
4. sin‘ o 4 cos? g — 1
&t i I3 :
5. sin 20 = 2gip V COS (y

6. cos20 = cos? ¢ pin? o = 2 coa2
= CQS(,v-1:1__2-2
o sin” o
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: ey €
o l { COS _2-(‘ . 9 l COy ’)’“‘
7. CO8T (v = — Ty SINT = — e
% ) . an e /4 N g
3. sin(a - ﬂ S v COs 7 CO8 v s1n 3

. ) . Aty 1) . P
0 <In %\” s 1[,‘} = BIIl ¥ CO8 ,Qi — COS ¢y Sin /}

A

10. cos (a + B) = cos arcos B — sin asin 6
11.cos (@ — B) = cos acos 8 + sin e sin 16,

tan o + tan 3
o A M.

12.tan (o + B) = 1 — tan o tan 3

13.sinacos = 3 (sin (a + B) + sin (@~ pB)
14.cosarcos B = 3 (cos (o + B) + cos (o — B))
15.sinasin B = —é— (—cos (a+ B) + cos (o= 1))

I6.sina+sinf = 2sina—'§g cosa—;[—a

17.coso + cos 3 = 2cosg—;5@cos°—gﬁ
18.5in0 — sin 8 = 2cos 248 sin 22

19.cos o ~ cos § = —2sin -°‘—'§-é sin “—;g—

Sinus och cosinus 4r definierade {or alla reella tal 2 och vi talar om sinusfunktionen,
cosinusfunktionen respektive tangensfunktionen, definierade genom 2 A y = sin 2
0sv. Tangensfunktionen ir definicrad for alla x # k7 och cotangensfunktionen for
alla .z £ % + km , k heltal. Av definitionerna framgar att savil cosinus- som sinus-
funktionen #r periodisk med (minsta) period 27r. Skall vi rita motsvarande kurvor
ricker det allts att betrakta ett intervall av lingd 27, tex. intervallet [0, 2], for
4l fd en bild. For tangensfunktionen tar vi intervallet (—7/2,m/2) ty den, liksom
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: iinsta) period 7

: jodisk med (n
) ] Y f wlmdlhl\
cotangenstunkiionen, ar | 1 v oot

. ita in linj == nledning att mjss-
En titt pd sinuskurvan och ett férsok att rita in hnjgn yh_ xdifrdzn . rg< S
. inje li O n for z > 0 och un i . C
tt denna linje ligger 6ver kurva . \ I
i?fkc;s?jker goéra motsvafande sak for tangensfunktionen verkar det som jen

ligger under kurvan y = tan z for z > 0 och 6ver den for x < 0.
&o

Foljande tva satser visar att dessa observationer #r korrekta. (Se dven Ovningarna
1.96 och 1.97.)

Sats 1.10 For allq 4 > 0 gdller att sin z < .

och betrakia nedanstiende figur,
triangeln OAP ér mindre an arean
Men 1riang§|r}s arc'z.i ar % (langden qy OA). (hc’ijden) = % -1-sin x och cirkelsek-
torns area 4r 3 - (langden qp 0A4) . (langden qp bigen A P) = z
Ur detta foljer den sOkta olikheten,
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1.17  Elementéiva funktioner

1.11 Foralla , 0< x <7/2 gdller att tanx > .

Sats

Vi jamfor aterigen areor och ser att arean av sektorn QAP &r mindre dn
\geln OAT, som &r 3 tan z. Resultatet foljer som i foregdende sats.
Funktioner av typen y = Acoswz + Bsinwz dyker inte si sillan upp i skilda
ickniska tillimpningar, som exempelvis d4 man behandlar svéngningsfenomen. Ut-
«veket gr alltid att skriva om pé foljande sitt.

Bevis:
qrean av triaf

Acoswx + Bsinwz =
A B
=+/A2 + B2 ( COS WT + sinwz | =
A2 + B2 VA2 + B2
— y/A? + B2 (sin Acoswx + cos A sinwz)

dar vi valt X s att

z = A
SinA = =555
B

COS A = 7\/—3-4-_—3-7
vilket alltid 4r mojligt eftersom (ﬁ, ﬁ) 4r en punkt pa enhetscirkeln.
Men enligt formel 8 i Sats 1.9 68 &r sin A coswz + €08 Asinwz = sin (wz + A) och
vi kan alltsa skriva

A coswz + Bsinwz = /A2 + B2 sin (wz + A) .

Fordelen med det sista uttrycket dr att det ger oss méjlighet att direkt utldsa fas-
ferskjutningen A och amplituden VA% + B2,

J gin WX J= f“ﬁ‘ ﬁn(wx*l)
aYRY 4
!‘_h | W
' 9 T wX
."-zt AN




Kapitel 1. Grunder
Exempel 1.85 Bestim amplitud och fasfirskjutning hos y = 4€08 9% = Bsin 5,

o \T = ’7; _F9 — D4 %?; och far
Losning: Vi borjar med alt bryta ul \/4') H{=0 = RS /LD o

p \
)\/T} 2 51 - o “in "”}'f)
o /12 [ —== cos bz + —= S I |
Yy = 2 < = L 0 "

Y \/T", '\\/.g.aj
Vi ska sedan bestimma A sa att

: - 2
sin A = i3

s

COS A = —\%—‘%

Hir kan vi sedan inte rdkna exakt, men med hjélp av minirdknare ser vi att ) .
146.3°. Vi har alltsé fatt
2+/13 (sin 146.3° cos 5T + €OS 146.3° sin 5x) =

9v/13sin (5% + 146.3°) .

7.9 och fasforskjutningen ar ungefir 146.3°, dvs,

y =

Amplituden 4r saledes 2v/13 =
ungefir 2.55 radianer.

1.17.8 Inversa trigonometriska funktioner

Ingen av de trigonometriska funktionerna har nigon invers om funktionerna betrak-
tas pé hela det vanliga definitionsomradet. Emellertid visar det sig praktiskt att tiif2
pé intervall, sa stora som mojligt, dér funktionerna dr monotona och dirfor omvénd-
bara. Man har kommit 6verens om vilka intervall man ska vilja och vi definier

inverserna dar.
Definition 1.17 De cyklometriska funktionerna eller arcusfunktionerna ar inverset
till de trigonometriska funktionerna pa vissa speciella intervall, nimligen:

y = arccos z dr inversen till y = cosz, 0 < @ <,
y = arcsin z dr inversen Lill y = sinz, —7/2 < < /2,
y = arctanz ir inversen till y = tanw, —7/2 < @ < 7/2.

Ibland hrykar man ocksa inféra en arcuscotangensfunktion, som &r inversen av ¥ -
(,'(')t z rpﬁ mtc'rvalle.t 0 <- x < . Beteckningarna cos™1, sin™!, respektive tan'l
torekommer inte sdllan i stillet [or arccos, arcsin respektive arctan

12
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Ur definitionerna far vi, eftersom funktionens definitionsmingd dr inversens viirdemingd

och tvirtom, att

Darccos - ’,_ 'l-> ” ‘/ﬂl"“fﬂﬂ - [()’ 7]_] )
Lot =5 ["’1, ” Varcsin = [_71’/2’ 7r/2] |
Darctan = K Varctan = ("77/2?'”/2) v
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by

1™ :?I#
3t —
y=atesinX _ 1‘// archany

NS \2 A /’%
LI R 1 pe—
y=arceosx | JZ;;_:__%

A A ﬂ __,,,...’:i,,}.»q—_v‘
4 i X ) e

S -1 a1 Bl P
Ur definitionerna foljer ocksd, eftersom y = f(z) <=« = [~ (y), toljande, fo,

all anvandning viktiga, samband:
0 <y < mochz = cosy,

—m/2<y< 7/2 och z = siny,
—m/2 <y < 7/2 och z = tany.

y = arccost <+
y = arcsin <
y = arctanz <

» 1can vi lisa ut pa foljande sitt: “Arcussinus for ef

Exempelvis den andra “regeln : : ’
_7/2 och /2 vars sinus dr talet.”

tal (mellan —1 och 1) dr den vinkel mellan

Exempel 1.86 arccos1/2 = /3, arcsin (-1/2) = —n/6, arccos V3/2 = /6,
arctan1 = 7/4. Déremot ir inte arcsinm definierat. Det finns ju inget y sa ait

siny = 7.
Exempel 1.87 De cyklometriska funktionerna kan anvindas for att uttrycka tri-

angelvinklars storlek (i radianer). Med figurens beteckningar giller « = arccos 3/5 =
arcsind/5 = arctan4/3 ty 0 < o < 7/2 och cosa = 3/5, sina = 4/5 och

tana = 4/3.

4| \8

3

Exempel 1.88 Visa att f6ljande formel géller for alla 2:
x

arctan r = arcsin ———
V14 x2

Lospmg:’rlnf(ir beteckningarna v och v genom att sitta v = arctanz och v =

arcsin —== & FAr vi t¢ — ¥ -

7oz Dd far vitanu = @ och =7 /2 < w < /2 samt sin v = —2— och
1427

~7/2 < v < /2. Insiittning av x = | —=&
o . In; ave = tanu | —= ’
: Flas o

tanu B tan u tan u
Vv1+tanZu 1 =i
—TCOS = COos U

= sinu
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o ol w8 e it Berrrnd st
kan sdga att V.cos”u = cosu beror pd att cosu > (i det aktuella intervallet

Alt Vi e ,
(,W/Q,W/2> . Alltsa galolu SIn v = sinu. I det intervall vi betraktar dr sinusfunk-
o omvindbar och saledes giller u = v, vilket skulle bevisas

tfione
: ks oOra ett geometris Vi 2o Fiire . .
vj kan ocksa gora ett g skt bevis. Antag forst att z > 0 och rita en ratvinklig

iriangel med kateterna 1 och x.
&1

i

Fran triangeln Kan vi dra slutsatsen dels att w = arcsin \/11;7, dels att v = arctan x.

pistandet foljer darfor f6r z > 0. Om x = 0 ar pastéendet uppenbarligen sant. Om
» < 0 anvidnder vi att arctanz = — arctan (—z) samt arcsinz = — arcsin(—x)
och utnyttjar det vi just visat for positiva z-virden.

1.18 Ovningar

1.18.1 Logik och ekvationer

1.1 Nedan anges utsagorna A och B. Skriv implikationspil mellan A och B si att man
far korrekt(a) implikation(er).
a) A:nédrmindre dn 7. B :n dr mindre dn 12.
b)A: 2 < 4. B:t<2
c)A:4z+3<3x—-8 B:rx<-1L

d)A:m+nirjimnt. B :m ochn érudda.

1.2 Kan « ersittas med nagot av tecknen &>, =, «—? Ange i sé fall vilket (eller

vilka).

)zr+3=8 x z—4=1,
WVIO—22=3z % z=1,
IVID—a2=3z * z2=1,
Dz =3 * z?2—-9=0,
e)cosz = —1 ¥ D=T,
22+ 3z =0 x x+8=0.

istaenden skriv dess negation ufarn att anvinda
Alla udda tal 4r delbara med 3.
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icke — X : Det finns udda tal som inte ar delbara med 3.
A : Det finns jaimna tal som inte ir delbara med i
BrpeT,

C : Inga primtal &r jamna,
D Alla tal som slutar pa 0 dr delbara med 10.

1.4 L6s ekvationen

3 _ 3 gy d) (z—2)* = 25(z =2
a) 23 =9z, b)22° = 32z, ¢zt =27z, d) (z — 2)* = 25(z — 2).

1.5 Los ekvationssystemet
(x —2)(z+ y) =0

= {1 ‘
a){x2+y2:25’ )| 22 +2y=8

. . 2?2 — xy — 20y =0
1.6 Los ekvationssystemet (a? + 3) (z + y3) =0

B 1.7 Skriv utan beloppstecken
a) |6, b) |14, olvi-2, d5-v29,
e)le—n|, DI4r—16/, & Ji—+B, b|-v2-+13],

i |v7-2], PI-m—13[.

1.8 Antag att 2 < z < 5. Skriv utan beloppstecken uttrycket
a)lz—1[, b|-z-1T, ) [z + 3|,
d)lz—9], elz—3, f) |z — 4.

1.9 Los ekvationen
2) [r—6/=3, b)|z—5/=T7 ¢ |z+4=9, d |z + 12| = —13.

1.10 Los ekvationen
a) |2z| +x =6, b)2z+ |z =6.

1.11 Los ekvationen
a)|(z+1)(z—3)| =3, b)

z—8

3z +4 B 5
=

1.18.2 Rella tal, olikheter

1.12 Los olikheten
) |z] <6, b)|lz—4/<3, c)|z+8 <2 d)|r+4>1

1.13 Sal)m[\zf rrllgd hjilp av absolutbelopp intervallet
101, b) (5,7), ¢ [3,12], d) (—8,12).
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1.18  Ovningar

14 Antag atl for de reella talen x och y giiller |2 — 3| < 4 och |y - 3| < 3. Visa att
e y| < 7och |z +y| <13. '

ligger hogst 0.05 ifran 0.9 och v hégst 0.08 ifrin 1.2.
) Hur langt ifran 2.1 ligger da u + v?

b) Hur langt ifrdn —0.3 ligger u — v?

Q9 e -9 6
7isa att om & > 3 sa géller 6
{.16 Vis 2 — cosdnl — o
=8
<1077,

7 4 .2 5%
117 Visaattomz > 10% sa gallel —_—
1.17 Visazé 2x —7

1.18 Visa utgdende frén olikheterna (1.4) pé sidan 21 att for allaa, b € R giller |2 + b| =

la| — 181l

1.18.3 Summor och produkter

1.19 Skriv med summatecken

a)2+3+4+5+6+7+8, b) 5410 + 15 + 20 + 25 + 30 + 35 + 40,
c)6+12+18+ ...+ 102, d)1-4+2-5+3-6+...-19-22,
S R Rt R R

1.20 Skriv utan X
o]
a) > k2,
kgl
d) 3 (i*+1),
i=1

i k c) 592(3+2k),
k=1 k=2

10

E

1.21 Skriv med produkttecken
2)7-9-11-13, b)2-(~3)-4-(=5) ...

¢)(=2)-3-(—4)-5-...-69, d)1-16-81-256- ... 160000.

- (—69),

1.22 Skr1v utan I1 . .
a) H3k b) []( 1), o I1H" 9 klllk-

123 Visa (genom direkt utrikning) att uttrycken TI3_, 4k och 411} _, k inte dr lika.
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1.24 Beridkna PR
30 L + (J 1T OF.
a) 4+ 7+ 10+ 13+ 16 +19, b) 14 + 19 +24 + 29+ .- o
: | o cumma B 7, 1/2 Tesp.
1.25 Femte, trettioforsta och sista termen 1 €0 aritmetisk summa R o
Bestim antalet termer och summans viirde.
9 1 en som anldnde samtlig
1.26 D4 ett ging teknologer sammanstralade tog val peh ((:’Hr- andslag K—{uri'g? .
redan komna i hand. P4 detta satt uthyttes sammanlagt 1 ;:,; landslag. Ul Mang,
a ] ~“nlinde € Ci) cil.
var teknologerna? (Vi antar att teknologerna anlande €n o€ }

: 4 ardet av
1.27 Prova nagon av texiens formler for att bestamma VEr

4 3 . 10 151 16 5
a) S 2% b Y- 9 izll, d) J;)l, e) Vzi:l :
k=1 =0 o= =

1.28 Anvind textens formler for att berdkna )
a)1+4+16+64+256+1024, b)1—4+16 _ 64 + 256 — 1024,

c) Z;lcio(—Q)—k’

29 Berikna virdet av
4 3 ‘ 10 151 16
@H%mHH%@HL®HL@ﬂ2
k=1 =0 4=0 7=0 v=1

d)2 — 6+ 18 — 54 + 162 — 486.

1.30 ” och bryt inte kedjan, utan sind utan drojsméal brev med samma lydelse som detta
till tre av Dina viinner, som i sin tur skall skicka brev till tre av sina vanner, etc. Du
kommer att f4 manga brev och bli en lyckligare ménniska! Din tillgivne
K E Djebrev”

L4t oss anta att Djebrev i forsta omgéangen startade kedjan med att sjélv sanda ut 20
brev. Om ingen brot kedjan, hur ménga brev skulle sammanlagt ha sénts ut efter 10
omgéngar?

1.31 Hérfikokte Holger har kommit in p4 Lulea tekniska universitet. For att klara eko-
nomin under studietiden har han bestimt sig for att 1dgga upp en sparplan att genom-
foras_.under sommaren fore studiernas borjan. Han tinker sig en blygsam upplaggt
{ng forﬁta maquen som blir juni (30 dagar). Han bestdmmer sig att ligga 1 krond
i sparbissan forsta dagen, sd 2 kronor andra dagen, 4 kronor tredje dagz,n osv., 82

att han varje dag ligger dubbelt s 7 ;
o ( mycket som narmast foregaend tort
belopp har Holger sparat ihop nér manaden ér slut? .  dag. Hurs

1.32 Varje minnisk o
arje manniska har 2 foréldrar, 4 far- och morforildrar etc. Om vi antar att varje

generation svarar 4
e l:neol 30 &r och gr 20 generationer tillbaka i tiden, hur mang?
n av oss sammanlagt sedan slutet av 1300-talet? , )
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118 Ovningar

1.184 Induktion

visa att for alla positiva heltal n giiller 2+ 4 +6 + ... + 2n = "2 & n,
Li}\ J18a ¢ .

med induktion att summan av de n forsta positiva udda heltalen ér lika med

L )‘\a 2 3 ot o o . a y -
134 ) afor med exempel 1.27 pd sidan 28 dir pastaendet visas pa ett enklare sétt.)

FE-E- kkﬂ

13§ Visaall tor alla n € Z géller

B 12423 +3-4+. 4n(n+1) =inn+ 1) +2),
b}l°3-’.-2-4+3-5+..,+n(n+2):%n(n+1)(2n+7),
@y4+25+3ﬁ+.“+Mn+a=%mn+nm+5L

D12+2+32 4+ +nP=gn(n+1)(2n+1)
3 2
1.36 Bevisa formeln k(Bk+1)=n(n+1)%,ne€ Z,.
k=1
137 Arnedanstdende formel riktig for alla positiva heltal n? Ge bevis eller motexempel.
1
12422432+, . (n—-1)>2+n?= 6(2n3+3nz—|—n+2).

1.38 Visa att for allan € Z giller

1
P—?+¥—f+m+@ﬂWM%4qwﬂﬂ%Ll

2n
1.39 Visa att for alla positiva heltal n géller > k(k +1) = tn(n+1)(Tn +5).

k=n
1.40 Visa (med induktion) att for alla positiva heltal n géller

1 1A 1
1+—=+—4=+...+—= 2 Vn
757 v

141 Visaau 3" k2. 1l < n- (n+ 1)! forallan € Zy.
k=1

142 Visa (med fadiikction) oBketss {1+ :%)(] + ﬁ) y <l o8 7'-;) > n + 1 foc alla
positiva heltal .
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‘ 1 g s a & L] e
1.18.5 Permutationer, kombinationer, hinomialsatsen

1.43 Utveckla a) (@ + 1), b (v z)3, ) (L- ), d) La = B)°,
1.44 Utveckla (a2 + 2y)® och (22 — ).

1.45 a) Bestim koefficienten for & lhlllolﬂ!d!ulVCLkllﬂ1§;f‘ﬁ av (f + L)

3\ .
b) Bestam koefficienten for 2° nbmonnalutwcgklmgen av (! — =) % # 0.

{41)" for att visa likheten }_, L5l =

1.46 a) Anviind binomialsatsen pa ( =

n 3
by Visaatt 3. (7) (-1)F =0.
k=0

1.18.6 Numeriska berikningar

1.47 Bestam de absoluta och relativa felet da a) 0.67, b) 0.66 anvands som narmevirde

till 2/3.
1.48 Ange absoluta och relativa felgrénser (inte nédvandigtvis de bista) da m approx-
imeras med 22/7.

1.49 Ange absolutfelgrans, relativfelgrins och ett intervall inom vilket talet ligger om vi
har a) 0.0540.005, b) — _1.01 +£0.01, c) 6300230.

1.50 Berikna antalet korrekta decimaler och signifikanta siffror samt approximativ el

tivfelgrans om vi har
a) 2.7£0.03, b) 2.76+0.03, ¢) 3£0.5,
d) 17.175+0.001, e) 49.3004:0.0001, ) 77+£5.

1.51 Berikna b + ¢, b — ¢, be och b/c med felgranser da
ab=4+ fJ)()Lh( ==
by b= 4 + 0.5 0och ¢ = 8.00 & 0.01.

1,52 Avrunda foljande tal till en decimal och ange avrundningsfelet.
a) 1.77, b) —2.285, ¢) —0.047,
d) 0.555, ¢€)0.25, N —0.35.

1.83 Vihara = 37
war &~ 37+ 0.5, Med hur minga decimaler ricker det ange « da vi ska beraknd

ayx 4w, bym—w, cywe, d)ywfu?
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1.54 Striickan LuIc;'i-.lnkknufkk UMPEES Yun 1'7.3 mil. Bo i Boden litar inte pa vigverket
" gtan kor med sin Saab till Luled och en annan dag med "Merschan” till Jokkmokk
och uppmater strickorna till 3.8 respektive 14.6 mil. Han vet att mitarna kan sla fel
med upp till 5 % respektive 4 %. Bor han ringa viigverket och péasté att de mitt fel?

1.55 En rektangular grasyta stegas upp. Sidorna uppmiittes till (9 + 1) m respektive
- 11 4+ 1) m. Ange grisytans area med felgrans med hjélp av
a) Sats 1.6, b) experimentell storningsrikning.

156 Her S N Ahlman har upptickt att man vid kassan i snabbkdpet forsoker vinna
kunder genom att generdst avrunda nedat till ndrmaste 50-6ring. Han forstar att det
kan l6na sig att passera kassan med en vara i tagel.

a) Hur mycket kan man maximalt tjaina om man k&per 4 varor?
b) Undersdk for olika n den maximala vinsten vid kép av n varor.
¢) Hur manga varor maste han kopa for att tjana minst 100 kronor?

1.57 Man vill bestimma volymen av tvd forpackningar. Den ena &r en cylindrisk burk
med hojden 2 = (10 = 0.2) cm och diametern d = (20 + 0.4) cm. Den andra har

formen av en kub med sidan s = (100 £ 1) cm.
a) Bestdm storsta och minsta téinkbara virdet pa vardera férpackningens volym.
b) Om 100 burkar ska packas i kuben och resten fyllas med sagspén, hur mycket

sAgspén kan det i viirsta fall behdvas?

1.58 Ange med feluppskattning fallstréickan s for en kropp som faller i (2.57 & 0.01)
sekunder om man vet att s = gt2/2 och g = (9.81 & 0.02) m/s?.

1.18.7 Funktioner, invers

159 S f(z) = 22 — 22 och D; = [0,3]. Vad blir Vy ? Rita figur.




Kapitel 1. Grunder

<o oneminod for funktionen
srsta mojliga definitionsméngd .

> storsta mojig
1.61 Anges

—— >t 91 = V:; —:m Jjg )
= t/(l -} 5) c)y 3

— " i o 6\ l')) y

Ay = Vv

sder sambandet |z] = y*. Definierar detra SaMbang o gy |

1.60 Mellan o och y radet: k‘-lon I
fran R ull R?

|

¢ / " ! *" 11 grc‘ ‘. ng o :
finns angivet ett samband mellan och y. Definerar deg, sambagg
32 Nedan finns angt
o tion = ~ y? Motivera med figur.

N gy
Ny =12+4, byz?+y* =25

R P T R S A e

Lol )yd = z.
o) ;yig —F d)y

ier igt nedan. Avgor om f ir Omvindbar. I
1.63 Funktionen f definieras enligt nedan. Avg ar. Motive, m |
jdlp av figur. ) gl |
h-]eia)][}(r):x3 ~00 <z < 00, b) f(z) =z*+1, ® <z <o |
g . . -
) f(z)=2?+2,0<z <00, d)f(x)=2?+uz, 0 <z <o
e) f(z) =z|z|, ~c0 < 2 < o0.

1.64 Bestam inversen av f om |
a) f(z) =23, —00 < z < o0, b) f(z) =

41122+:'L‘—%—LU§_3:.<00,
) f(z) =x|z|, ~00 < 7 < o0,

_ | & for0 <z <1,
1.65 Funktionen f definieras genom f(x) = 9/2 — 2 for 1 < £ < 9

2) Rita funktionens graf och, i samma diagram, inversen f—1( ).

b) Ange inversen p4 formen [ z) =

1.66 Man har f@) =28 -2 _o T < 00. Visa med hjilp av definitionen att faen
omvéndbar funktion, Bestin sedan f~1(g)
167 Undersok, med hj

Jélp av definitionen, o funktionen f #r monoton pa I d |
@fb):x2+3mm[=4Q5L

‘ b) f() = h I =[-3,-1],
C)f($):1*$200h1:[54’4]. ) f(x) = 3/z och |

9(z) = { z?, 0<z<1/2,
*3+1/12, 1/2< 2 < 1

hos f-19

Stréing Viixande
" e'
? Rita Vad k

N
‘e i Skapel
: . an man g3 onotonitetsegen

Nagra typiskq figurer. S
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o Avgor med hyélp av en figur i vilka intervall som f #r vixande, avtagande, strangt
vixande eller stringt avtagande om

. z/2, 0Le<]
'(]) {(,]’\) j— 3‘ - .T, ' ‘ii T <i 2

b) ]((\}) - |°I —z+1,—oc0o <2 < x,

22, ol <1
Af@) =131, |z|>1"

1.7

171 Ange utirycket for go f om
A f(x) = 322 — 1 och g(x) = 2z + 2,

b) f(z) =1~z och gl@) = 422,
¢) f(z) =1+1/x och a(y) = 2y — 2, |
d) f(z) =22 — 2z, 2 > 1ochg(z) =1+ V1 +=. |

1,72 Visa att funktionerna f och g 4r varandras inverser om ,
) f(z) =24 + 22,z 2 0och g(x) = \/~1/2+ \/z + 14, ¢ 20,
b) f(z) =v1++1—z,2 <lochg(z) =222 ~z% z > 1. |

En i samman-
hanget passande
vers

dr vl in-

Var matteldrare
fyller ar i mor-

.73 Bestam f o g och go fom
8) f(z) =2z och g(z) =z — 1,
b) f(x) = 22 och g(z) = 2z + 1.

1.74 Bestéim den n:te itererade funktionen f, till f om vi sitter f, = f, fo = f; o f,
f3= fs 0 f osv. och

) f(z) =3z, b) f(z) = /3, ©) f(z) =2z 1.

L7 Sitt g(z) = 1 — ¢ och bestim g0 g, g0 g0 g, .., gogo...0 g (n sL.).
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1.18.8 Ele

mentara ﬁmkt!(m'fir
piaraf € funktion T M
L ultrye cfinierar €1 polynom xy?
"ne spiande ul!l}’bk‘ ‘ N P 2 4
1.76 \’]lkd({:\;“ ,l}r2 91 4 30, Y — g\ 3z ‘ 8x ’
‘)n'. — tJe — ¥ 4 p — @ " o ¥
: 8 — 18z + Vv D = \/f”7 y=r (z) = (ng + 1822 _ 4
- -,J2)3

o )"(J') \/§ 2

{
~ y
|edande term for polynomen i 6vnj
n
g 1.7,

got av polynomen p(z
p(/,) Och s(z

Pl

en 1,2 eller 5 ett nollstille till nd

svning 1.767
rationella funktionen 7 definierad

4m definitions i
A G~ 18z3

T'(:U) == CL’Z —1

a funktioner sO™ inte @r polynom och som har hela R
i L1 S0m def.

ns det rationel
gvaret.

psmingd? Motivera

ktioner kan med hjalp

1.80 Fin

nitio
av en division skrivas om efter foliang
Ol)ands

1.81 Vissa rationella fun

I modell:
1
32+ — 1
x+4

- x+4

j‘i Den givna cationella funktionens tdljare har
nimnarens medan taljarens gradtal understi

nen langst till hoger. Skriv pa analogt sdtt om de rationell
a)a:4+5:v2+3x+4 g3 — a2+ 9z | 22 +2e+0
=+ 1 L 3 N Escunpany i

x3 + 2z 24z +l

ett gradtal som dr storre eller lika med
ger ngmnarens i den rationella funkic-
a funktionerna

, coch d ar konstanter. Bestam alla shdana funk-

az+b
— ¢ forallaz € Dy

1.82 Betrakta flz) = &£5, dira b
tioner f for vilka det gller att f (f(z))

on sol

1.83 Hur lang tid :
g tid skulle det ta innan folkmiingden hade i fyrdubblats i den situati

beskrivs i exempel 1.80?

dessd:

1084 I iﬂnS det no
agra i 9
&r potensfunktlonel som 4r sin cgen INvers ! BCStﬁIIl 1 Sé fall alla

lg (422 +7)

1.85 Los ekvationen ————=
TEES

| 1.86 Bestdm utan riknehj
| )(l,stam utan riknehjilmedel det exakta vird
‘ s et

0g5 V3V/3Y3, b)logs /625, c)ln— g v
84 » O, dln Ve




1.18  Ovningar
1.87 Om Ig x = t, vad blir, uttryckt i ¢,

a)lg{f; b Ig \/’r‘? o) lgl/x, d) g (&x/\/x)?

In(x+h)~Inx ( B /b
I :

o — e el e it S N e & [
1,88 Visa all uttrycket P kan omformas till In [ 1 1 )
) o

)

1.89 En aktuell ljudintensitet J brukar jamforas med en referensintensitet [, genom att
man anger ljudintensitetsnivin L = 10Ig I /I,. Den pa detta siitt berdknade ljud-
intensitetsnivan sdgs vara angiven i decibel (dB). Ljudintensitetsnivan ett par m@t@r
fefin en viss motor skall sénkas fran 70 till 50 dB genom ljuddidmpande étgirder.
Bestam forhallandet mellan ljudintensiteterna f6re och efter tgirderna. )

1.90 Eti radioaktivt grunddmne sonderfaller enligt formeln i exempel 1.84, sid. 66, dir
tiden ¢ nu méts i dagar. Bestdm viirdet pd sonderfallskonstanten om dmnets halver-
ingstid ar 3.8 dagar.

191 Om en kropp med temperaturen T’ = T}, °C placeras i ett rum med temperatur 0
s far den efter tiden ¢ minuter temperaturen 7. Da géller Newtons avsvalningslag
T = Tpe~®, dir a #r en konstant. I ett visst fall har temperaturen sjunkit fran 25°
ill 20° p& 10 minuter Efter hur 14ng tid ytterligare har den sjunkit till 15°7

1.92 En I6ntagargrupp hade vid forhandlingar blivit lovad lika ménga kronors 16ne-
forhojning under tvé pé varandra foljande &r. Hojningens storlek skulle vara 5%
av den nuvarande 16nen. Nir gruppens férhandlare meddelade att man istéllet kom-
mit verens om 5% hojning forsta dret och 4.9% av den dé aktuella 15nen dret ddrpa
blev manga forgrymmade. De blev emellertid gladare nér de réknat pd hojningarna.
Forklara varfor.

1.93 Visa att for alla z € R giller att cosh(—z) = cosh z och sinh(~z) = —sinhz.
194 Visaatt foralla z € R giiller att cosh® z—sinh® z = 1. (Den "hyperboliska ettan™.)

]‘95 ‘Vifia att fOT alla T R g‘al]er cosh 2(13 = COSh2$ -+ SinhQJI OCh Sln.h Q20 =
2 cosh z sinh z.

196 Visa hur man direkt ur resultatet av Sats 1.10 sid. 70 kan fa fram olikheten sinx >
z for z < ().

\

1.97 Visa hur man ur Sats 1.11, sid. 71 kan fa fram olikheten tanx < x forallaz €
(—m/2,0).
1.98 Sats 1.10 sid. 70 giller givetvis dven om man byter ut @ mot x/2. Utnyttja detta
och vanliga trigonometriska formler for att visa olikheten cos v > 1 — x?/2 for alla
z. For vilka z giller likhet?
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ar alla 1/2.7/2) och z # 0 giiller 1 <« .2 |
r att forallax € (=7/2, m/2) oc [ <o
1,99 Visa at for ¢ ( ng < .
“US @
e - 7 o |' 3 2 ye l o l e . ~
itar kurvan y = sin® z brukar det blj fe ; Niirh
¢! c[c

l.‘l(“l I:‘il»sln gsnﬂcn |l!ﬂn l i .
1 ats 1.10 kan hjilpa en att {4 kurvan riktig hyy

Visa hur olikheten iS

ay Or

1.101 Bestim exakia viirden for amplitud och fasforskjutning for
Y= —\'}’(3: cos 2x + ‘% sin 25”? b) Yy = COs 4x + \/g sin 41,”

)y = 3 cos 8z — 3sin8z.
1.102 Bestim amplitud och fasforskjutning for

a)y = 3.1cos 2z + 6.2 sin2z, b)y=12cosdz — 3.7sin3z
1.103 )y = 0.5cos 7z + 1.2sin 1.

1.104 Vad ar
a) arccos (—1),  b)arccosl/2,  c)arcsin (1), d)arcesinl/2,
e) arccos 1, f) arccos 2, g) arcsin 1, h) arcsin 2,
i) arctan 1, j) arctan V37
1.105 Los ekvationen
a) arccosz = /4, b)arcsinz = —7/6,
¢) arctanz = 7/6, d)arccosz = —7/6.

1.106 Ls foljande ekvationer och ange rotierna med hjalp av cyklometriska funktioner:

a)cosz = 5/13, b)sinz =8/9,
c)tanz =4, d) cosx = 4.

ST — 2
1.107 Visa att for 0 < z < 1 géller arccos x = arctan i .

1.108 Visa att arcsin (—z) = — arcsin x och arccosz = 7/2 — arcsinz.

1.109 Anvind minirdknare for att bestimma
a) arcsin 0.871, b) arcsin 0.996, ¢) arccos 0.510,
d) arccos 0.846, e) arcsin(—0.63), f) arcsin ( —0.988) ,
g)arccos (—0.12),  h) arccos(—0.849).

1.110° Anvind minirdknare foy att bestimma

a) arctan (.86, b) arctan 8.6, ¢) arctan 86,
d) arctan 860), e) arccot 0.86, 1) arccot 8.6.
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